Bifurcations in four-dimensional switched systems

被引:0
|
作者
Hany A. Hosham
机构
[1] Taibah University,Department of Mathematics, Faculty of Science
[2] Al-Azhar University,Department of Mathematics, Faculty of Science
关键词
Period-; orbit; Invariant cones; Sliding motion; Poincaré map; Multi-sliding bifurcation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the focus is on a bifurcation of period-K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{K}$\end{document} orbit that can occur in a class of Filippov-type four-dimensional homogenous linear switched systems. We introduce a theoretical framework for analyzing the generalized Poincaré map corresponding to switching manifold. This provides an approach to capturing the possible results concerning the existence of a period-K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{K}$\end{document} orbit, stability, a number of invariant cones, and related bifurcation phenomena. Moreover, the analysis identifies criteria for the existence of multi-sliding bifurcation depending on the sensitivity of the system behavior with respect to changes in parameters. Our results show that a period-two orbit involves multi-sliding bifurcation from a period-one orbit. Further, the existence of invariant torus, crossing-sliding, and grazing-sliding bifurcation is investigated. Numerical simulations are carried out to illustrate the results.
引用
收藏
相关论文
共 50 条
  • [1] Bifurcations in four-dimensional switched systems
    Hosham, Hany A.
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [2] Bifurcations of Periodic Orbits for a Four-Dimensional System
    刘宣亮
    Journal of Shanghai Jiaotong University(Science), 2004, (02) : 82 - 86
  • [3] Local bifurcations of three and four-dimensional systems: A tractable characterization with economic applications
    Bosi, Stefano
    Desmarchelier, David
    MATHEMATICAL SOCIAL SCIENCES, 2019, 97 : 38 - 50
  • [4] Equivariant bifurcations in four-dimensional fixed point spaces
    Lauterbach, Reiner
    Schwenker, Soeren Niklas
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2017, 32 (01): : 117 - 147
  • [5] GLOBAL DYNAMICS AND BIFURCATIONS IN A FOUR-DIMENSIONAL REPLICATOR SYSTEM
    Wang, Yuashi
    Wu, Hong
    Ruan, Shigui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (01): : 259 - 271
  • [6] The zero-Hopf bifurcations of a four-dimensional hyperchaotic system
    Llibre, Jaume
    Tian, Yuzhou
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (05)
  • [8] Three dimensional reductions of four-dimensional quasilinear systems
    Pavlov, Maxim V.
    Stoilov, Nikola M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (11)
  • [9] Symmetry in the Painleve Systems and Their Extensions to Four-Dimensional Systems
    Sasano, Yusuke
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2008, 51 (03): : 351 - 369
  • [10] Superintegrable cases of four-dimensional dynamical systems
    Esen, Ogul
    Choudhury, Anindya Ghose
    Guha, Partha
    Gumral, Hasan
    REGULAR & CHAOTIC DYNAMICS, 2016, 21 (02): : 175 - 188