Symmetry and monotonicity of nonnegative solutions to pseudo-relativistic Choquard equations

被引:0
|
作者
Yuxia Guo
Shaolong Peng
机构
[1] Tsinghua University,Department of Mathematics
关键词
Pseudo-relativistic Choquard equations; Narrow region principle; Generalized direct method of moving planes; Primary: 35B45; Secondary: 35J40; 35J91;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following pseudo-relativistic Choquard equations: (-Δ+m2)su+wu=RN,t1|x-y|N-2t∗upuq,inRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta +m^{2})^{s} u+wu=R_{N,t}\left( \frac{1}{|x-y|^{N-2t}}*u^{p}\right) u^{q}, \quad \mathrm{in} \;\;\mathbb {R}^{N}, \end{aligned}$$\end{document}where s,t∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s,t\in (0,1)$$\end{document}, mass m>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>0$$\end{document}, w>-m2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w>-m^{2s}$$\end{document}, 2<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<p<\infty $$\end{document}, and 0<q≤p-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<q\le p-1$$\end{document}. We first establish a narrow region principle for pseudo-relativistic Choquard equations and estimate the decay of the solutions at infinity. Using the generalized direct method of moving planes, we obtain the radial symmetry and monotonicity of nonnegative solutions for the above equations.
引用
收藏
相关论文
共 50 条
  • [41] Ground states for pseudo-relativistic equations with combined power and Hartree-type nonlinearities
    Zelati, Vittorio Coti
    Nolasco, Margherita
    RECENT TRENDS IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS II: STATIONARY PROBLEMS, 2013, 595 : 151 - 167
  • [42] Direct Methods for Pseudo-relativistic Schrodinger Operators
    Dai, Wei
    Qin, Guolin
    Wu, Dan
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (06) : 5555 - 5618
  • [43] Symmetry of positive solutions for Choquard equations with fractional p-Laplacian
    Ma, Lingwei
    Zhang, Zhenqiu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 182 : 248 - 262
  • [44] MONOTONICITY AND SYMMETRY OF SOLUTIONS TO FRACTIONAL p-LAPLACIAN EQUATIONS
    Zhang, Yajie
    Ma, Feiyao
    Wo, Weifeng
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (05) : 1883 - 1892
  • [45] Remarks about a generalized pseudo-relativistic Hartree equation
    Bueno, H.
    Miyagaki, O. H.
    Pereira, G. A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (01) : 876 - 909
  • [46] Direct Methods for Pseudo-relativistic Schrödinger Operators
    Wei Dai
    Guolin Qin
    Dan Wu
    The Journal of Geometric Analysis, 2021, 31 : 5555 - 5618
  • [47] ON CRITICAL PSEUDO-RELATIVISTIC HARTREE EQUATION WITH POTENTIAL WELL
    Zheng, Yu
    Yang, Minbo
    Shen, Zifei
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2020, 55 (01) : 185 - 226
  • [48] ASYMPTOTIC SYMMETRY AND MONOTONICITY OF SOLUTIONS FOR WEIGHTED FRACTIONAL PARABOLIC EQUATIONS
    Feng, Jing
    Hu, Yunyun
    Li, Ye
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023,
  • [49] Monotonicity and Symmetry of Nonnegative Solutions to -Δu = f(u) in Half-Planes and Strips
    Farina, Alberto
    Sciunzi, Berardino
    ADVANCED NONLINEAR STUDIES, 2017, 17 (02) : 297 - 310
  • [50] Existence and mass concentration of pseudo-relativistic Hartree equation
    Yang, Jianfu
    Yang, Jinge
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (08)