Existence and mass concentration of pseudo-relativistic Hartree equation

被引:21
|
作者
Yang, Jianfu [1 ]
Yang, Jinge [2 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
[2] Nanchang Inst Technol, Sch Sci, Nanchang 330099, Jiangxi, Peoples R China
关键词
BOSON STARS; COMMUTATORS;
D O I
10.1063/1.4996576
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate the constrained minimization problem e(a): = inf({u is an element of H,parallel to u parallel to 22=1})E(a)(u), where the energy functional E-a(u) = integral(3)(R)(u root-Delta+m(2)u + vu(2)) dx - a/s integral(3)(R) (vertical bar x vertical bar(-1) * u(2))u(2) dx with m is an element of R, a > 0, is defined on a Sobolev space H. We show that there exists a threshold a* > 0 so that e(a) is achieved if 0 < a < a* and has no minimizers if a >= a*. We also investigate the asymptotic behavior of non-negative minimizers of e(a) as a -> a*. Published by AIP Publishing.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Ground states of a coupled pseudo-relativistic Hartree system: Existence and concentration behavior
    He, Huiting
    Liu, Chungen
    Zuo, Jiabin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 428 : 585 - 622
  • [2] Remarks about a generalized pseudo-relativistic Hartree equation
    Bueno, H.
    Miyagaki, O. H.
    Pereira, G. A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (01) : 876 - 909
  • [3] ON CRITICAL PSEUDO-RELATIVISTIC HARTREE EQUATION WITH POTENTIAL WELL
    Zheng, Yu
    Yang, Minbo
    Shen, Zifei
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2020, 55 (01) : 185 - 226
  • [4] Ground states for the pseudo-relativistic Hartree equation with external potential
    Cingolani, Silvia
    Secchi, Simone
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (01) : 73 - 90
  • [5] Vortex-type solutions for magnetic pseudo-relativistic Hartree equation
    Zhang, Guoqing
    Gao, Qian
    APPLICABLE ANALYSIS, 2022, 101 (03) : 1101 - 1114
  • [6] The kernel condition of a linearized pseudo-relativistic Hartree equation, a numerical approach
    Jonsson, B. L. G.
    MATHEMATICAL MODELING OF WAVE PHENOMENA, 2009, 1106 : 173 - 180
  • [7] Asymptotic behavior of ground states of generalized pseudo-relativistic Hartree equation
    Belchior, P.
    Bueno, H.
    Miyagaki, O. H.
    Pereira, G. A.
    ASYMPTOTIC ANALYSIS, 2020, 118 (04) : 269 - 295
  • [8] Vortex solutions for pseudo-relativistic Hartree equations
    Yang, Jinge
    Yang, Jianfu
    NONLINEARITY, 2023, 36 (07) : 3939 - 3968
  • [9] Standing waves for the pseudo-relativistic Hartree equation with Berestycki-Lions nonlinearity
    Gao, Fashun
    Radulescu, Vicentiu D.
    Yang, Minbo
    Zheng, Yu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 295 : 70 - 112
  • [10] Limit behaviors of pseudo-relativistic Hartree equation with power-type perturbations
    Wang, Qingxuan
    Xu, Zefeng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (02)