Remarks about a generalized pseudo-relativistic Hartree equation

被引:10
|
作者
Bueno, H. [1 ]
Miyagaki, O. H. [2 ]
Pereira, G. A. [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Matemat, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Fed Juiz de Fora, Dept Matemat, BR-36036330 Juiz De Fora, MG, Brazil
关键词
Variational methods; Fractional Laplacian; Hartree equations; NONLINEAR SCHRODINGER-EQUATION; FRACTIONAL LAPLACIAN; CHOQUARD EQUATION; EXTENSION PROBLEM; GROUND-STATES; INEQUALITY; REGULARITY; SOBOLEV; OPERATORS; GUIDE;
D O I
10.1016/j.jde.2018.07.058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
With appropriate hypotheses on the nonlinearity f, we prove the existence of a ground state solution u for the problem (-Delta + m(2))(sigma) u + Vu = (W * F(u)) f (u) in R-N, where 0 < sigma < 1, V is a bounded continuous potential and F the primitive of f. We also show results about the regularity of any solution of this problem. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:876 / 909
页数:34
相关论文
共 50 条
  • [1] Asymptotic behavior of ground states of generalized pseudo-relativistic Hartree equation
    Belchior, P.
    Bueno, H.
    Miyagaki, O. H.
    Pereira, G. A.
    ASYMPTOTIC ANALYSIS, 2020, 118 (04) : 269 - 295
  • [2] ON CRITICAL PSEUDO-RELATIVISTIC HARTREE EQUATION WITH POTENTIAL WELL
    Zheng, Yu
    Yang, Minbo
    Shen, Zifei
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2020, 55 (01) : 185 - 226
  • [3] Existence and mass concentration of pseudo-relativistic Hartree equation
    Yang, Jianfu
    Yang, Jinge
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (08)
  • [4] Ground states for the pseudo-relativistic Hartree equation with external potential
    Cingolani, Silvia
    Secchi, Simone
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (01) : 73 - 90
  • [5] Vortex-type solutions for magnetic pseudo-relativistic Hartree equation
    Zhang, Guoqing
    Gao, Qian
    APPLICABLE ANALYSIS, 2022, 101 (03) : 1101 - 1114
  • [6] The kernel condition of a linearized pseudo-relativistic Hartree equation, a numerical approach
    Jonsson, B. L. G.
    MATHEMATICAL MODELING OF WAVE PHENOMENA, 2009, 1106 : 173 - 180
  • [7] Vortex solutions for pseudo-relativistic Hartree equations
    Yang, Jinge
    Yang, Jianfu
    NONLINEARITY, 2023, 36 (07) : 3939 - 3968
  • [8] Standing waves for the pseudo-relativistic Hartree equation with Berestycki-Lions nonlinearity
    Gao, Fashun
    Radulescu, Vicentiu D.
    Yang, Minbo
    Zheng, Yu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 295 : 70 - 112
  • [9] Limit behaviors of pseudo-relativistic Hartree equation with power-type perturbations
    Wang, Qingxuan
    Xu, Zefeng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (02)
  • [10] Nodal solutions for pseudo-relativistic Hartree equations
    Huang, Zhihua
    Yang, Jianfu
    Yu, Weilin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (01)