Ground states for the pseudo-relativistic Hartree equation with external potential

被引:38
|
作者
Cingolani, Silvia [1 ]
Secchi, Simone [2 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, I-70125 Bari, Italy
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
关键词
EXISTENCE; UNIQUENESS; LIMIT; FIELD;
D O I
10.1017/S0308210513000450
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of positive ground state solutions to the pseudo-relativistic Schrodinger equation root-Delta vertical bar m(2)u vertical bar Vu = (W * vertical bar u vertical bar(theta))vertical bar u vertical bar(theta-2) u in R-N, u is an element of H-1/2(R-N), where N >= 3, m > 0, V is a bounded external scalar potential and W is a radially symmetric convolution potential satisfying suitable assumptions. We also provide some asymptotic decay estimates of the found solutions.
引用
收藏
页码:73 / 90
页数:18
相关论文
共 50 条
  • [1] Asymptotic behavior of ground states of generalized pseudo-relativistic Hartree equation
    Belchior, P.
    Bueno, H.
    Miyagaki, O. H.
    Pereira, G. A.
    ASYMPTOTIC ANALYSIS, 2020, 118 (04) : 269 - 295
  • [2] ON CRITICAL PSEUDO-RELATIVISTIC HARTREE EQUATION WITH POTENTIAL WELL
    Zheng, Yu
    Yang, Minbo
    Shen, Zifei
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2020, 55 (01) : 185 - 226
  • [3] Ground states for pseudo-relativistic Hartree equations of critical type
    Zelati, Vittorio Coti
    Nolasco, Margherita
    REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (04) : 1421 - 1436
  • [4] Ground states of a coupled pseudo-relativistic Hartree system: Existence and concentration behavior
    He, Huiting
    Liu, Chungen
    Zuo, Jiabin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 428 : 585 - 622
  • [5] Remarks about a generalized pseudo-relativistic Hartree equation
    Bueno, H.
    Miyagaki, O. H.
    Pereira, G. A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (01) : 876 - 909
  • [6] Existence and mass concentration of pseudo-relativistic Hartree equation
    Yang, Jianfu
    Yang, Jinge
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (08)
  • [7] Ground states for pseudo-relativistic equations with combined power and Hartree-type nonlinearities
    Zelati, Vittorio Coti
    Nolasco, Margherita
    RECENT TRENDS IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS II: STATIONARY PROBLEMS, 2013, 595 : 151 - 167
  • [8] Ground states for pseudo-relativistic Choquard equations
    Wang, Yuanyuan
    Zhang, Guoqing
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 : 41 - 55
  • [9] Vortex-type solutions for magnetic pseudo-relativistic Hartree equation
    Zhang, Guoqing
    Gao, Qian
    APPLICABLE ANALYSIS, 2022, 101 (03) : 1101 - 1114
  • [10] The kernel condition of a linearized pseudo-relativistic Hartree equation, a numerical approach
    Jonsson, B. L. G.
    MATHEMATICAL MODELING OF WAVE PHENOMENA, 2009, 1106 : 173 - 180