Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data

被引:0
|
作者
Patrick Danaher
Youngmi Kim
Brenn Nelson
Maddy Griswold
Zhi Yang
Erin Piazza
Joseph M. Beechem
机构
[1] NanoString Technologies,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Mapping cell types across a tissue is a central concern of spatial biology, but cell type abundance is difficult to extract from spatial gene expression data. We introduce SpatialDecon, an algorithm for quantifying cell populations defined by single cell sequencing within the regions of spatial gene expression studies. SpatialDecon incorporates several advancements in gene expression deconvolution. We propose an algorithm harnessing log-normal regression and modelling background, outperforming classical least-squares methods. We compile cell profile matrices for 75 tissue types. We identify genes whose minimal expression by cancer cells makes them suitable for immune deconvolution in tumors. Using lung tumors, we create a dataset for benchmarking deconvolution methods against marker proteins. SpatialDecon is a simple and flexible tool for mapping cell types in spatial gene expression studies. It obtains cell abundance estimates that are spatially resolved, granular, and paired with highly multiplexed gene expression data.
引用
收藏
相关论文
共 50 条
  • [1] Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data
    Danaher, Patrick
    Kim, Youngmi
    Nelson, Brenn
    Griswold, Maddy
    Yang, Zhi
    Piazza, Erin
    Beechem, Joseph M.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [2] SpatialDWLS: accurate deconvolution of spatial transcriptomic data
    Dong, Rui
    Yuan, Guo-Cheng
    GENOME BIOLOGY, 2021, 22 (01)
  • [3] SpatialDWLS: accurate deconvolution of spatial transcriptomic data
    Rui Dong
    Guo-Cheng Yuan
    Genome Biology, 22
  • [4] Advances in spatial transcriptomic data analysis
    Dries, Ruben
    Chen, Jiaji
    Del Rossi, Natalie
    Khan, Mohammed Muzamil
    Sistig, Adriana
    Yuan, Guo-Cheng
    GENOME RESEARCH, 2021, 31 (10) : 1706 - 1718
  • [5] Deconvolution of diverse cell types in the tumor microenvironment by jointly modeling transcriptomic and epigenomic information
    Shi, Alvin H.
    Li, Yue
    Murugadoss, Karthik
    Kellis, Manolis
    CANCER IMMUNOLOGY RESEARCH, 2017, 5 (03)
  • [6] STdGCN: spatial transcriptomic cell-type deconvolution using graph convolutional networks
    Li, Yawei
    Luo, Yuan
    GENOME BIOLOGY, 2024, 25 (01):
  • [7] Computational deconvolution of transcriptomics data from mixed cell populations
    Cobos, Francisco Avila
    Vandesompele, Jo
    Mestdagh, Pieter
    De Preter, Katleen
    BIOINFORMATICS, 2018, 34 (11) : 1969 - 1979
  • [8] Deconvolution of Spatial Transcriptomic Allows to Predict the Spatial Location of Each Cell Type of Interest in the Fibrotic Lung
    Justet, A.
    Adams, T.
    Balayev, A.
    Barnthaler, T.
    Cosme, C., Jr.
    Mcdonough, J. E.
    Flint, J.
    Schupp, J. C.
    Zhao, A.
    Deluliis, J.
    Ahangari, F.
    Yan, X.
    Kaminski, N.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2022, 205
  • [9] Missing cell types in single-cell references impact deconvolution of bulk data but are detectable
    Adriana Ivich
    Natalie R. Davidson
    Laurie Grieshober
    Weishan Li
    Stephanie C. Hicks
    Jennifer A. Doherty
    Casey S. Greene
    Genome Biology, 26 (1)
  • [10] SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data
    Yunqing Liu
    Ningshan Li
    Ji Qi
    Gang Xu
    Jiayi Zhao
    Nating Wang
    Xiayuan Huang
    Wenhao Jiang
    Huanhuan Wei
    Aurélien Justet
    Taylor S. Adams
    Robert Homer
    Amei Amei
    Ivan O. Rosas
    Naftali Kaminski
    Zuoheng Wang
    Xiting Yan
    Genome Biology, 25 (1)