Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data

被引:0
|
作者
Patrick Danaher
Youngmi Kim
Brenn Nelson
Maddy Griswold
Zhi Yang
Erin Piazza
Joseph M. Beechem
机构
[1] NanoString Technologies,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Mapping cell types across a tissue is a central concern of spatial biology, but cell type abundance is difficult to extract from spatial gene expression data. We introduce SpatialDecon, an algorithm for quantifying cell populations defined by single cell sequencing within the regions of spatial gene expression studies. SpatialDecon incorporates several advancements in gene expression deconvolution. We propose an algorithm harnessing log-normal regression and modelling background, outperforming classical least-squares methods. We compile cell profile matrices for 75 tissue types. We identify genes whose minimal expression by cancer cells makes them suitable for immune deconvolution in tumors. Using lung tumors, we create a dataset for benchmarking deconvolution methods against marker proteins. SpatialDecon is a simple and flexible tool for mapping cell types in spatial gene expression studies. It obtains cell abundance estimates that are spatially resolved, granular, and paired with highly multiplexed gene expression data.
引用
收藏
相关论文
共 50 条
  • [21] Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis
    Lohoff, T.
    Ghazanfar, S.
    Missarova, A.
    Koulena, N.
    Pierson, N.
    Griffiths, J. A.
    Bardot, E. S.
    Eng, C. -H. L.
    Tyser, R. C. V.
    Argelaguet, R.
    Guibentif, C.
    Srinivas, S.
    Briscoe, J.
    Simons, B. D.
    Hadjantonakis, A. -K.
    Gottgens, B.
    Reik, W.
    Nichols, J.
    Cai, L.
    Marioni, J. C.
    NATURE BIOTECHNOLOGY, 2022, 40 (01) : 74 - +
  • [22] Panpipes: a pipeline for multiomic single-cell and spatial transcriptomic data analysis
    Curion, Fabiola
    Rich-Griffin, Charlotte
    Agarwal, Devika
    Ouologuem, Sarah
    Rue-Albrecht, Kevin
    May, Lilly
    Garcia, Giulia E. L.
    Heumos, Lukas
    Thomas, Tom
    Lason, Wojciech
    Sims, David
    Theis, Fabian J.
    Dendrou, Calliope A.
    GENOME BIOLOGY, 2024, 25 (01):
  • [23] Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis
    T. Lohoff
    S. Ghazanfar
    A. Missarova
    N. Koulena
    N. Pierson
    J. A. Griffiths
    E. S. Bardot
    C.-H. L. Eng
    R. C. V. Tyser
    R. Argelaguet
    C. Guibentif
    S. Srinivas
    J. Briscoe
    B. D. Simons
    A.-K. Hadjantonakis
    B. Göttgens
    W. Reik
    J. Nichols
    L. Cai
    J. C. Marioni
    Nature Biotechnology, 2022, 40 : 74 - 85
  • [24] Evaluating performance and applications of sample-wise cell deconvolution methods on human brain transcriptomic data
    Dai, Rujia
    Chu, Tianyao
    Zhang, Ming
    Wang, Xuan
    Jourdon, Alexandre
    Wu, Feinan
    Mariani, Jessica
    Vaccarino, Flora M.
    Lee, Donghoon
    Fullard, John F.
    Hoffman, Gabriel E.
    Roussos, Panos
    Wang, Yue
    Wang, Xusheng
    Pinto, Dalila
    Wang, Sidney H.
    Zhang, Chunling
    Chen, Chao
    Liu, Chunyu
    SCIENCE ADVANCES, 2024, 10 (21):
  • [25] Bayesian Joint Modeling of Single-Cell Expression Data and Bulk Spatial Transcriptomic Data
    Jinge Yu
    Qiuyu Wu
    Xiangyu Luo
    Statistics in Biosciences, 2023, 15 : 719 - 733
  • [26] Bayesian Joint Modeling of Single-Cell Expression Data and Bulk Spatial Transcriptomic Data
    Yu, Jinge
    Wu, Qiuyu
    Luo, Xiangyu
    STATISTICS IN BIOSCIENCES, 2023, 15 (03) : 719 - 733
  • [27] Single Cell and Spatial Transcriptomic Analysis of Cancers
    Suzuki, Yutaka
    CANCER SCIENCE, 2022, 113 : 1314 - 1314
  • [28] Single Cell and Spatial Transcriptomic Analysis of Cancers
    Suzuki, Yutaka
    CANCER SCIENCE, 2021, 112 : 235 - 235
  • [29] Transcriptomic Signatures Of Individual Cell Types In Cavernous Angioma
    Li, Ying
    Girard, Romuald
    Srinath, Abhinav
    Ciszewski, Cezary
    Chen, Chang
    Lightle, Rhonda
    Romanos, Sharbel
    Moore, Thom
    Debiasse, Dorothy
    Antonopoulos, Mira
    Bindal, Akash
    Ali, Heba
    Stadnik, Agnieszka
    Lee, Justine
    Lopez-Ramirez, Miguel A.
    Shi, Changbin
    STROKE, 2023, 54
  • [30] Kinome inhibition states and multiomics data enable prediction of cell viability in diverse cancer types
    Berginski, Matthew
    Joisa, Chinmaya
    Golitz, Brian
    Gomez, Shawn
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (02)