Bayesian Joint Modeling of Single-Cell Expression Data and Bulk Spatial Transcriptomic Data

被引:1
|
作者
Yu, Jinge [1 ]
Wu, Qiuyu [1 ]
Luo, Xiangyu [1 ]
机构
[1] Renmin Univ China, Inst Stat & Big Data, Beijing 100872, Peoples R China
基金
中国国家自然科学基金;
关键词
scRNA-seq; Spatial transcriptomics; Integrative analysis; Deconvolution; Heterogeneity; GENE-EXPRESSION;
D O I
10.1007/s12561-021-09308-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell RNA-sequencing (scRNA-seq) enables gene expression profiling at single-cell resolution, but it loses the spatial information of cells for solid tissues during the tissue dissociation step before sequencing. In contrast, bulk spatial transcriptomics (ST) methods can measure the expression of spatially organized spots in solid tissues, but as a spot comprises dozens of cells, ST expression levels are averaged signals and lack cellular resolution. Joint analysis of these two complementary data types provides the opportunity to recover the spatial patterns of cell types and obtain the cellular enrichment of spots. However, there is a lack of unified statistical methods to achieve this goal. This study develops a Bayesian statistical method named BEATS to jointly model scRNA-seq data and bulk ST data from a common sample in the presence of cellular and spatial heterogeneity. BEATS can simultaneously (a) discover cell types, where cells in a cell type share mean expression profiles; (b) identify spot regions, where a region is a set of spots with the same cellular compositions; and (c) estimate cell-type proportions for each spot region. The Bayesian posterior inference is performed through a hybrid Markov chain Monte Carlo sampling algorithm. Extensive simulation studies and application to datasets on pancreatic ductal adenocarcinoma tissues demonstrate the practical utility of BEATS.
引用
收藏
页码:719 / 733
页数:15
相关论文
共 50 条
  • [1] Bayesian Joint Modeling of Single-Cell Expression Data and Bulk Spatial Transcriptomic Data
    Jinge Yu
    Qiuyu Wu
    Xiangyu Luo
    Statistics in Biosciences, 2023, 15 : 719 - 733
  • [2] Assessing transcriptomic heterogeneity of single-cell RNASeq data by bulk-level gene expression data
    Tiong, Khong-Loon
    Luzhbin, Dmytro
    Yeang, Chen-Hsiang
    BMC BIOINFORMATICS, 2024, 25 (01):
  • [3] WebAtlas pipeline for integrated single-cell and spatial transcriptomic data
    Li, Tong
    Horsfall, David
    Basurto-Lozada, Daniela
    Roberts, Kenny
    Prete, Martin
    Lawrence, John E. G.
    He, Peng
    Tuck, Elisabeth
    Moore, Josh
    Yoldas, Aybuke Kupcu
    Babalola, Kolawole
    Hartley, Matthew
    Ghazanfar, Shila
    Teichmann, Sarah A.
    Haniffa, Muzlifah
    Bayraktar, Omer Ali
    NATURE METHODS, 2024, : 3 - 5
  • [4] Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis
    T. Lohoff
    S. Ghazanfar
    A. Missarova
    N. Koulena
    N. Pierson
    J. A. Griffiths
    E. S. Bardot
    C.-H. L. Eng
    R. C. V. Tyser
    R. Argelaguet
    C. Guibentif
    S. Srinivas
    J. Briscoe
    B. D. Simons
    A.-K. Hadjantonakis
    B. Göttgens
    W. Reik
    J. Nichols
    L. Cai
    J. C. Marioni
    Nature Biotechnology, 2022, 40 : 74 - 85
  • [5] Panpipes: a pipeline for multiomic single-cell and spatial transcriptomic data analysis
    Curion, Fabiola
    Rich-Griffin, Charlotte
    Agarwal, Devika
    Ouologuem, Sarah
    Rue-Albrecht, Kevin
    May, Lilly
    Garcia, Giulia E. L.
    Heumos, Lukas
    Thomas, Tom
    Lason, Wojciech
    Sims, David
    Theis, Fabian J.
    Dendrou, Calliope A.
    GENOME BIOLOGY, 2024, 25 (01):
  • [6] Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis
    Lohoff, T.
    Ghazanfar, S.
    Missarova, A.
    Koulena, N.
    Pierson, N.
    Griffiths, J. A.
    Bardot, E. S.
    Eng, C. -H. L.
    Tyser, R. C. V.
    Argelaguet, R.
    Guibentif, C.
    Srinivas, S.
    Briscoe, J.
    Simons, B. D.
    Hadjantonakis, A. -K.
    Gottgens, B.
    Reik, W.
    Nichols, J.
    Cai, L.
    Marioni, J. C.
    NATURE BIOTECHNOLOGY, 2022, 40 (01) : 74 - +
  • [7] Spatial reconstruction of single-cell gene expression data
    Rahul Satija
    Jeffrey A Farrell
    David Gennert
    Alexander F Schier
    Aviv Regev
    Nature Biotechnology, 2015, 33 : 495 - 502
  • [8] Spatial reconstruction of single-cell gene expression data
    Satija, Rahul
    Farrell, Jeffrey A.
    Gennert, David
    Schier, Alexander F.
    Regev, Aviv
    NATURE BIOTECHNOLOGY, 2015, 33 (05) : 495 - U206
  • [9] ArrayExpress update - from bulk to single-cell expression data
    Athar, Awais
    Fullgrabe, Anja
    George, Nancy
    Iqbal, Haider
    Huerta, Laura
    Ali, Ahmed
    Snow, Catherine
    Fonseca, Nuno A.
    Petryszak, Robert
    Papatheodorou, Irene
    Sarkans, Ugis
    Brazma, Alvis
    NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D711 - D715
  • [10] Deciphering the Spatial Modular Patterns of Tissues by Integrating Spatial and Single-Cell Transcriptomic Data
    Shan, Xu
    Chen, Jinyu
    Dong, Kangning
    Zhou, Wei
    Zhang, Shihua
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (07) : 650 - 663