SpatialDWLS: accurate deconvolution of spatial transcriptomic data

被引:127
|
作者
Dong, Rui [1 ,2 ]
Yuan, Guo-Cheng [1 ,3 ]
机构
[1] Harvard Med Sch, Dana Farber Canc Inst, Dept Pediat Oncol, Boston, MA 02215 USA
[2] Harvard Med Sch, Massachusetts Gen Hosp, Canc Ctr, Charlestown, MA 02129 USA
[3] Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, Dept Genet & Genom Sci, New York, NY 10029 USA
关键词
Spatial transcriptomics; Single cell; Deconvolution; GENE-EXPRESSION; TISSUE; SEQ;
D O I
10.1186/s13059-021-02362-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Recent development of spatial transcriptomic technologies has made it possible to characterize cellular heterogeneity with spatial information. However, the technology often does not have sufficient resolution to distinguish neighboring cell types. Here, we present spatialDWLS, to quantitatively estimate the cell-type composition at each spatial location. We benchmark the performance of spatialDWLS by comparing it with a number of existing deconvolution methods and find that spatialDWLS outperforms the other methods in terms of accuracy and speed. By applying spatialDWLS to a human developmental heart dataset, we observe striking spatial temporal changes of cell-type composition during development.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] SpatialDWLS: accurate deconvolution of spatial transcriptomic data
    Rui Dong
    Guo-Cheng Yuan
    Genome Biology, 22
  • [2] A new deconvolution algorithm for accurate assessing immune and stromal cell populations in mouse transcriptomic data
    Lu, Xiaoyu
    Tu, Szu-Wei
    Chang, Wennan
    Huo, Yan
    Wang, Pengcheng
    Zhang, Yu
    Zhang, Chi
    Cao, Sha
    CANCER RESEARCH, 2019, 79 (13)
  • [3] Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data
    Patrick Danaher
    Youngmi Kim
    Brenn Nelson
    Maddy Griswold
    Zhi Yang
    Erin Piazza
    Joseph M. Beechem
    Nature Communications, 13
  • [4] Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data
    Danaher, Patrick
    Kim, Youngmi
    Nelson, Brenn
    Griswold, Maddy
    Yang, Zhi
    Piazza, Erin
    Beechem, Joseph M.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [5] EVALUATING DIVERSE DECONVOLUTION METHODS FOR TUMOR SPATIAL TRANSCRIPTOMIC DATASETS
    Li, Guangyuan
    Bayegan, Amir
    Lee, Joon Sang
    Jackson, Donald
    Pollard, Jack
    JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2022, 10 : A965 - A965
  • [6] Analysis and Visualization of Spatial Transcriptomic Data
    Liu, Boxiang
    Li, Yanjun
    Zhang, Liang
    FRONTIERS IN GENETICS, 2022, 12
  • [7] Advances in spatial transcriptomic data analysis
    Dries, Ruben
    Chen, Jiaji
    Del Rossi, Natalie
    Khan, Mohammed Muzamil
    Sistig, Adriana
    Yuan, Guo-Cheng
    GENOME RESEARCH, 2021, 31 (10) : 1706 - 1718
  • [8] Deconvolution of Spatial Transcriptomic Allows to Predict the Spatial Location of Each Cell Type of Interest in the Fibrotic Lung
    Justet, A.
    Adams, T.
    Balayev, A.
    Barnthaler, T.
    Cosme, C., Jr.
    Mcdonough, J. E.
    Flint, J.
    Schupp, J. C.
    Zhao, A.
    Deluliis, J.
    Ahangari, F.
    Yan, X.
    Kaminski, N.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2022, 205
  • [9] SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data
    Yunqing Liu
    Ningshan Li
    Ji Qi
    Gang Xu
    Jiayi Zhao
    Nating Wang
    Xiayuan Huang
    Wenhao Jiang
    Huanhuan Wei
    Aurélien Justet
    Taylor S. Adams
    Robert Homer
    Amei Amei
    Ivan O. Rosas
    Naftali Kaminski
    Zuoheng Wang
    Xiting Yan
    Genome Biology, 25 (1)
  • [10] STdGCN: spatial transcriptomic cell-type deconvolution using graph convolutional networks
    Li, Yawei
    Luo, Yuan
    GENOME BIOLOGY, 2024, 25 (01):