SpatialDWLS: accurate deconvolution of spatial transcriptomic data

被引:127
|
作者
Dong, Rui [1 ,2 ]
Yuan, Guo-Cheng [1 ,3 ]
机构
[1] Harvard Med Sch, Dana Farber Canc Inst, Dept Pediat Oncol, Boston, MA 02215 USA
[2] Harvard Med Sch, Massachusetts Gen Hosp, Canc Ctr, Charlestown, MA 02129 USA
[3] Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, Dept Genet & Genom Sci, New York, NY 10029 USA
关键词
Spatial transcriptomics; Single cell; Deconvolution; GENE-EXPRESSION; TISSUE; SEQ;
D O I
10.1186/s13059-021-02362-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Recent development of spatial transcriptomic technologies has made it possible to characterize cellular heterogeneity with spatial information. However, the technology often does not have sufficient resolution to distinguish neighboring cell types. Here, we present spatialDWLS, to quantitatively estimate the cell-type composition at each spatial location. We benchmark the performance of spatialDWLS by comparing it with a number of existing deconvolution methods and find that spatialDWLS outperforms the other methods in terms of accuracy and speed. By applying spatialDWLS to a human developmental heart dataset, we observe striking spatial temporal changes of cell-type composition during development.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A guidebook of spatial transcriptomic technologies, data resources and analysis approaches
    Yue, Liangchen
    Liu, Feng
    Hu, Jiongsong
    Yang, Pin
    Wang, Yuxiang
    Dong, Junguo
    Shu, Wenjie
    Huang, Xingxu
    Wang, Shengqi
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 940 - 955
  • [22] SRT-Server: powering the analysis of spatial transcriptomic data
    Sheng Yang
    Xiang Zhou
    Genome Medicine, 16
  • [23] Deconvolution of spatial sequencing provides accurate characterization of hESC-derived DA transplants in vivo
    Rajova, Jana
    Davidsson, Marcus
    Avallone, Martino
    Hartnor, Morgan
    Aldrin-Kirk, Patrick
    Cardoso, Tiago
    Mollbrink, Annelie
    Nolbrant, Sara
    Storm, Petter
    Heuer, Andreas
    Parmar, Malin
    Bjorklund, Tomas
    MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2023, 29 : 381 - 394
  • [24] SpatialPrompt: spatially aware scalable and accurate tool for spot deconvolution and domain identification in spatial transcriptomics
    Swain, Asish Kumar
    Pandit, Vrushali
    Sharma, Jyoti
    Yadav, Pankaj
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [25] Spatial deconvolution of spectropolarimetric data: an application to quiet Sun magnetic elements
    Quintero Noda, C.
    Asensio Ramos, A.
    Orozco Suarez, D.
    Ruiz Cobo, B.
    ASTRONOMY & ASTROPHYSICS, 2015, 579
  • [26] STPDA: Leveraging spatial-temporal patterns for downstream analysis in spatial transcriptomic data
    Shi, Mingguang
    Cheng, Xudong
    Dai, Yulong
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2024, 112
  • [27] VPAC: Variational projection for accurate clustering of single-cell transcriptomic data
    Chen, Shengquan
    Hua, Kui
    Cui, Hongfei
    Jiang, Rui
    BMC BIOINFORMATICS, 2019, 20 (Suppl 7)
  • [28] VPAC: Variational projection for accurate clustering of single-cell transcriptomic data
    Shengquan Chen
    Kui Hua
    Hongfei Cui
    Rui Jiang
    BMC Bioinformatics, 20
  • [29] SPATIAL TRANSCRIPTOMIC CLONAL DECONVOLUTION IDENTIFIES THE 'LETHAL CLONE' IN PROSTATE CANCER AS DEFINED BY ABILITY TO METASTASIZE TO LYMPH NODES
    Yin, Wencheng
    Figiel, Sandy
    He, Mengxiao
    Teague, Renuka
    Anbarasan, Thineskrishna
    Ranasinha, Nithesh
    Singh, Reema
    Poulose, Ninu
    Doultsinos, Dimitrios
    Abusamra, Sophia
    Erickson, Andrew
    Loda, Massimo
    Verrill, Clare
    Colling, Richard
    Gill, Pelvender
    Bryant, Richard
    Cussenot, Olivier
    Hamdy, Freddie
    Woodcock, Dan
    Mills, Ian
    Lundeberg, Joakim
    Lamb, Alastair
    JOURNAL OF UROLOGY, 2024, 211 (05): : E182 - E182
  • [30] Toward an accurate analysis of range queries on spatial data
    An, N
    Jin, J
    Sivasubramaniam, A
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2003, 15 (02) : 305 - 323