Advances in spatial transcriptomic data analysis

被引:92
|
作者
Dries, Ruben [1 ,2 ,3 ]
Chen, Jiaji [1 ]
Del Rossi, Natalie [4 ]
Khan, Mohammed Muzamil [1 ,2 ,3 ]
Sistig, Adriana [4 ]
Yuan, Guo-Cheng [4 ,5 ]
机构
[1] Boston Univ, Dept Med, Sch Med, Boston, MA 02118 USA
[2] Boston Univ, Bioinformat Grad Program, Boston, MA 02215 USA
[3] Boston Univ, Sect Computat Biomed, Sch Med, Boston, MA 02118 USA
[4] Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, Dept Genet & Genom Sci, New York, NY 10029 USA
[5] Icahn Sch Med Mt Sinai, Precis Immunol Inst, New York, NY 10029 USA
基金
美国国家卫生研究院;
关键词
CELL RNA-SEQ; IN-SITU RNA; GENE-EXPRESSION; IDENTIFICATION; ORGANIZATION; ANNOTATION; TISSUE;
D O I
10.1101/gr.275224.121
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomics is a rapidly growing field that promises to comprehensively characterize tissue organization and architecture at the single-cell or subcellular resolution. Such information provides a solid foundation for mechanistic understanding of many biological processes in both health and disease that cannot be obtained by using traditional technologies. The development of computational methods plays important roles in extracting biological signals from raw data. Various approaches have been developed to overcome technology-specific limitations such as spatial resolution, gene coverage, sensitivity, and technical biases. Downstream analysis tools formulate spatial organization and cell-cell communications as quantifiable properties, and provide algorithms to derive such properties. Integrative pipelines further assemble multiple tools in one package, allowing biologists to conveniently analyze data from beginning to end. In this review, we summarize the state of the art of spatial transcriptomic data analysis methods and pipelines, and discuss how they operate on different technological platforms.
引用
收藏
页码:1706 / 1718
页数:13
相关论文
共 50 条
  • [1] Analysis and Visualization of Spatial Transcriptomic Data
    Liu, Boxiang
    Li, Yanjun
    Zhang, Liang
    FRONTIERS IN GENETICS, 2022, 12
  • [2] standR: spatial transcriptomic analysis for GeoMx DSP data
    Liu, Ning
    Bhuva, Dharmesh D.
    Mohamed, Ahmed
    Bokelund, Micah
    Kulasinghe, Arutha
    Tan, Chin Wee
    Davis, Melissa J.
    NUCLEIC ACIDS RESEARCH, 2024, 52 (01)
  • [3] Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data
    Danaher, Patrick
    Kim, Youngmi
    Nelson, Brenn
    Griswold, Maddy
    Yang, Zhi
    Piazza, Erin
    Beechem, Joseph M.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [4] Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data
    Patrick Danaher
    Youngmi Kim
    Brenn Nelson
    Maddy Griswold
    Zhi Yang
    Erin Piazza
    Joseph M. Beechem
    Nature Communications, 13
  • [5] SRT-Server: powering the analysis of spatial transcriptomic data
    Yang, Sheng
    Zhou, Xiang
    GENOME MEDICINE, 2024, 16 (01)
  • [6] A guidebook of spatial transcriptomic technologies, data resources and analysis approaches
    Yue, Liangchen
    Liu, Feng
    Hu, Jiongsong
    Yang, Pin
    Wang, Yuxiang
    Dong, Junguo
    Shu, Wenjie
    Huang, Xingxu
    Wang, Shengqi
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 940 - 955
  • [7] SRT-Server: powering the analysis of spatial transcriptomic data
    Sheng Yang
    Xiang Zhou
    Genome Medicine, 16
  • [8] STPDA: Leveraging spatial-temporal patterns for downstream analysis in spatial transcriptomic data
    Shi, Mingguang
    Cheng, Xudong
    Dai, Yulong
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2024, 112
  • [9] Advances in spatial transcriptomics and related data analysis strategies
    Jun Du
    Yu-Chen Yang
    Zhi-Jie An
    Ming-Hui Zhang
    Xue-Hang Fu
    Zou-Fang Huang
    Ye Yuan
    Jian Hou
    Journal of Translational Medicine, 21
  • [10] Advances in spatial transcriptomics and related data analysis strategies
    Du, Jun
    Yang, Yu-Chen
    An, Zhi-Jie
    Zhang, Ming-Hui
    Fu, Xue-Hang
    Huang, Zou-Fang
    Yuan, Ye
    Hou, Jian
    JOURNAL OF TRANSLATIONAL MEDICINE, 2023, 21 (01)