Quantum interference control of electrical currents in GaAs microstructures: physics and spectroscopic applications

被引:0
|
作者
E. Sternemann
T. Jostmeier
C. Ruppert
S. Thunich
H. T. Duc
R. Podzimski
T. Meier
M. Betz
机构
[1] TU Dortmund,Experimentelle Physik 2
[2] Universität Paderborn,Department of Physics and CeOPP
[3] Vietnam Academy of Science and Technology,Ho Chi Minh City Institute of Physics
来源
Applied Physics B | 2016年 / 122卷
关键词
GaAs; Second Harmonic Generation; Harmonic Generation; Current Injection; Group Velocity Dispersion;
D O I
暂无
中图分类号
学科分类号
摘要
We present a comprehensive study of coherently controlled charge currents in electrically contacted GaAs microdevices. Currents are generated all-optically by phase-related femtosecond ω/2ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega /2\omega$$\end{document} pulse pairs and are often linked to the third-order optical nonlinearity χ(3)(0;ω,ω,-2ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{(3)}(0;\omega ,\omega ,-2\omega )$$\end{document}. Here, we first focus on elevated irradiances where absorption saturation and ultimately the onset of Rabi oscillations contribute to the optical response. In particular, we identify clear departures of the injected current from the χ(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{(3)}$$\end{document}-expectation dJ/dt∝Eω2E2ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {d}}J/{\mathrm {d}}t \propto E_\omega ^2 E_{2\omega }$$\end{document}. Theoretical simulations for the coherently controlled current based on the semiconductor Bloch equations agree well with the experimental trends. We then move on to investigate spectroscopic applications of the quantum interference control technique. In particular, we implement a versatile scheme to analyze the phase structure of femtosecond pulses. It relies on phase-sensitive χ(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{(3)}$$\end{document}-current injection driven by two time-delayed portions of the ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document}/2ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\omega$$\end{document} pulse pair. Most strikingly, the group velocity dispersions of both the ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document} and 2ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\omega$$\end{document} components can be unambiguously determined from a simple Fourier transform of the resulting current interferogram. Finally, we aim to use femtosecond ω/2ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega /2\omega$$\end{document} pulse pairs to demonstrate a theoretically proposed scheme for all-optical current detection in thin GaAs membranes. However, we find the signal to be superimposed by second harmonic generation related to the electric field inducing the current. As a result, the currents’ signature cannot be unambiguously identified.
引用
收藏
相关论文
共 50 条
  • [21] All-optical injection and control of spin and electrical currents in quantum wells
    Najmaie, A
    Bhat, RDR
    Sipe, JE
    PHYSICAL REVIEW B, 2003, 68 (16)
  • [22] Ultrafast field-resolved semiconductor spectroscopy utilizing quantum interference control of currents
    Ruppert, Claudia
    Lohrenz, Jan
    Thunich, Sebastian
    Betz, Markus
    OPTICS LETTERS, 2012, 37 (18) : 3879 - 3881
  • [23] Sub-diffraction optical coherent control of ultrafast electrical currents in antenna devices on GaAs
    Thunich, Sebastian
    Ruppert, Claudia
    Holleitner, Alexander W.
    Betz, Markus
    APPLIED PHYSICS LETTERS, 2012, 101 (25)
  • [24] Quantum interference injection and control of spin-polarized transient current gratings in GaAs
    van Driel, HM
    Kerachian, Y
    Nemec, P
    Smirl, AL
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2004, 19 (04) : S223 - S225
  • [25] Electrical Control of the Electron Spin Relaxation in (In) GaAs-based Quantum Wells
    Balocchi, Andrea
    Azaizia, Sawsen
    Carrere, Helene
    Amand, Thierry
    Arnoult, Alexandre
    Fontaine, Chantal
    Liu, Baoli
    Marie, Xavier
    2016 IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE (NMDC), 2016,
  • [26] Electrical control of the sign of the g factor in a GaAs hole quantum point contact
    Srinivasan, A.
    Hudson, K. L.
    Miserev, D.
    Yeoh, L. A.
    Klochan, O.
    Muraki, K.
    Hirayama, Y.
    Sushkov, O. P.
    Hamilton, A. R.
    PHYSICAL REVIEW B, 2016, 94 (04)
  • [27] High-Performance GaAs/AlAs Terahertz Quantum-Cascade Lasers For Spectroscopic Applications
    Schrottke, Lutz
    Lu, Xiang
    Roeben, Benjamin
    Biermann, Klaus
    Hagelschuer, Till
    Wienold, Martin
    Huebers, Heinz-Wilhelm
    Hannemann, Mario
    van Helden, Jean-Pierre H.
    Roepcke, Jurgen
    Grahn, Holger T.
    IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2020, 10 (02) : 133 - 140
  • [28] Quantum interference control of carriers and currents in zinc blende semiconductors based on nonlinear absorption processes
    Muniz, Rodrigo A.
    Salazar, Cuauhtemoc
    Wang, Kai
    Cundiff, S. T.
    Sipe, J. E.
    PHYSICAL REVIEW B, 2019, 100 (07)
  • [29] Quantum interference currents by excitation of heavy- and light-hole excitons in GaAs/Al0.3Ga0.7As quantum wells
    Bieler, Mark
    Pierz, Klaus
    Siegner, Uwe
    Dawson, Philip
    PHYSICAL REVIEW B, 2006, 73 (24):
  • [30] InAs quantum boxes in GaAs/AlAs pillar microcavities: From spectroscopic investigations to spontaneous emission control
    Gerard, J.M.
    Legrand, B.
    Gayral, B.
    Costard, E.
    Sermage, B.
    Kuszelewicz, R.
    Barrier, D.
    Thierry-Mieg, V.
    Rivera, T.
    Marzin, J.Y.
    Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2 (1-4): : 804 - 808