Quantum interference control of electrical currents in GaAs microstructures: physics and spectroscopic applications

被引:0
|
作者
E. Sternemann
T. Jostmeier
C. Ruppert
S. Thunich
H. T. Duc
R. Podzimski
T. Meier
M. Betz
机构
[1] TU Dortmund,Experimentelle Physik 2
[2] Universität Paderborn,Department of Physics and CeOPP
[3] Vietnam Academy of Science and Technology,Ho Chi Minh City Institute of Physics
来源
Applied Physics B | 2016年 / 122卷
关键词
GaAs; Second Harmonic Generation; Harmonic Generation; Current Injection; Group Velocity Dispersion;
D O I
暂无
中图分类号
学科分类号
摘要
We present a comprehensive study of coherently controlled charge currents in electrically contacted GaAs microdevices. Currents are generated all-optically by phase-related femtosecond ω/2ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega /2\omega$$\end{document} pulse pairs and are often linked to the third-order optical nonlinearity χ(3)(0;ω,ω,-2ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{(3)}(0;\omega ,\omega ,-2\omega )$$\end{document}. Here, we first focus on elevated irradiances where absorption saturation and ultimately the onset of Rabi oscillations contribute to the optical response. In particular, we identify clear departures of the injected current from the χ(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{(3)}$$\end{document}-expectation dJ/dt∝Eω2E2ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {d}}J/{\mathrm {d}}t \propto E_\omega ^2 E_{2\omega }$$\end{document}. Theoretical simulations for the coherently controlled current based on the semiconductor Bloch equations agree well with the experimental trends. We then move on to investigate spectroscopic applications of the quantum interference control technique. In particular, we implement a versatile scheme to analyze the phase structure of femtosecond pulses. It relies on phase-sensitive χ(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{(3)}$$\end{document}-current injection driven by two time-delayed portions of the ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document}/2ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\omega$$\end{document} pulse pair. Most strikingly, the group velocity dispersions of both the ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document} and 2ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\omega$$\end{document} components can be unambiguously determined from a simple Fourier transform of the resulting current interferogram. Finally, we aim to use femtosecond ω/2ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega /2\omega$$\end{document} pulse pairs to demonstrate a theoretically proposed scheme for all-optical current detection in thin GaAs membranes. However, we find the signal to be superimposed by second harmonic generation related to the electric field inducing the current. As a result, the currents’ signature cannot be unambiguously identified.
引用
收藏
相关论文
共 50 条
  • [31] InAs quantum boxes in GaAs/AlAs pillar microcavities: From spectroscopic investigations to spontaneous emission control
    Gerard, JM
    Legrand, B
    Gayral, B
    Costard, E
    Sermage, B
    Kuszelewicz, R
    Barrier, D
    Thierry-Mieg, V
    Rivera, T
    Marzin, JY
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 1998, 2 (1-4): : 804 - 808
  • [32] Optimal geometry of lateral GaAs and Si/SiGe quantum dots for electrical control of spin qubits
    Malkoc, Ognjen
    Stano, Peter
    Loss, Daniel
    PHYSICAL REVIEW B, 2016, 93 (23)
  • [33] Magnetic and electrical control of electron-nuclear spin coupling in GaAs double quantum dots
    Tarucha, Seigo
    Baugh, Jonathan
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (03)
  • [34] Electrical Properties of Si Quantum Dot in GaAs1-xPx Matrix for Solar Cell Applications
    Guesmi, Houcine
    Aissat, Abdelkader
    Safi, Meirem
    Barbezier, Isabelle
    PROCEEDINGS OF 2019 7TH INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC), 2019, : 47 - 51
  • [35] Superposition of electron-hole density gratings in GaAs generated by quantum control of charge densities and charge currents
    Kerachian, Y.
    van Driel, H. M.
    PHYSICAL REVIEW B, 2007, 75 (12)
  • [36] Device interference in GaAs quantum wire transistors and its suppression by surface passivation using Si interface control layer
    Jia, Rui
    Hasegawa, Hideki
    Shiozaki, Naoko
    Kasai, Seiya
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2006, 24 (04): : 2060 - 2068
  • [37] Calculations of the two-photon Franz-Keldysh effect and field-induced quantum interference control in GaAs
    Wahlstrand, J. K.
    Cundiff, S. T.
    Sipe, J. E.
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [38] Electrical control of optically pumped electron spin in a single GaAs/AlAs quantum dot fabricated by nanohole infilling
    Germanis, S.
    Atkinson, P.
    Hostein, R.
    Suffit, S.
    Margaillan, F.
    Voliotis, V.
    Eble, B.
    PHYSICAL REVIEW B, 2020, 102 (03)
  • [39] Electrical control of the sign of the g factor in a GaAs hole quantum point contact (vol 94, 041406, 2016)
    Srinivasan, A.
    Hudson, K. L.
    Miserev, D.
    Yeoh, L. A.
    Klochan, O.
    Muraki, K.
    Hirayama, Y.
    Sushkov, O. P.
    Hamilton, A. R.
    PHYSICAL REVIEW B, 2016, 94 (07)
  • [40] Electron-nuclear spin control in charged semiconductor quantum dots by electrical currents through micro-coils
    Kim, Jungtaek
    Puls, J.
    Chen, Y. S.
    Bacher, G.
    Henneberger, F.
    APPLIED PHYSICS LETTERS, 2010, 96 (15)