High-Performance GaAs/AlAs Terahertz Quantum-Cascade Lasers For Spectroscopic Applications

被引:20
|
作者
Schrottke, Lutz [1 ]
Lu, Xiang [1 ]
Roeben, Benjamin [1 ]
Biermann, Klaus [1 ]
Hagelschuer, Till [2 ]
Wienold, Martin [2 ,3 ]
Huebers, Heinz-Wilhelm [2 ,3 ]
Hannemann, Mario [4 ]
van Helden, Jean-Pierre H. [4 ]
Roepcke, Jurgen [4 ]
Grahn, Holger T. [1 ]
机构
[1] Leibniz Inst Forsch Verbund Berlin eV, Paul Drude Inst Festkorperelekt, D-10117 Berlin, Germany
[2] German Aerosp Ctr DLR, Inst Opt Sensor Syst, D-12489 Berlin, Germany
[3] Humboldt Univ, Dept Phys, D-12489 Berlin, Germany
[4] Leibniz Inst Plasma Sci & Technol INP, D-17489 Greifswald, Germany
关键词
Quantum cascade lasers; Laser transitions; Surface emitting lasers; Spectroscopy; Tuning; Laser modes; Scattering; Quantum-cascade laser (QCLs); terahertz (THz) spectroscopy; MBE GROWTH; MODE;
D O I
10.1109/TTHZ.2019.2957456
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have developed terahertz (THz) quantum-cascade lasers (QCLs) based on GaAs/AlAs heterostructures for application-defined emission frequencies between 3.4 and 5.0 THz. Due to their narrow line width and rather large intrinsic tuning range, these THz QCLs can be used as local oscillators in airborne or satellite-based astronomical instruments or as radiation sources for high-resolution absorption spectroscopy, which is expected to allow for a quantitative determination of the density of atoms and ions in plasma processes. The GaAs/AlAs THz QCLs can be operated in mechanical cryocoolers and even in miniature cryocoolers due to the comparatively high wall-plug efficiency of around 0.2% and typical current densities below 500 A/cm$<<^>>2$. These lasers emit output powers of more than 1 mW at operating temperatures up to about 70 K, which is sufficient for most of the abovementioned applications.
引用
收藏
页码:133 / 140
页数:8
相关论文
共 50 条
  • [1] Terahertz GaAs/AlAs quantum-cascade lasers
    Schrottke, L.
    Lue, X.
    Rozas, G.
    Biermann, K.
    Grahn, H. T.
    [J]. APPLIED PHYSICS LETTERS, 2016, 108 (10)
  • [2] Long-term stability of GaAs/AlAs terahertz quantum-cascade lasers
    Schrottke, L.
    Lu, X.
    Biermann, K.
    Gellie, P.
    Grahn, H. T.
    [J]. AIP ADVANCES, 2022, 12 (08)
  • [3] High-performance continuous-wave operation of superlattice terahertz quantum-cascade lasers
    Köhler, R
    Tredicucci, A
    Beltram, F
    Beere, HE
    Linfield, EH
    Davies, AG
    Ritchie, DA
    Dhillon, SS
    Sirtori, C
    [J]. APPLIED PHYSICS LETTERS, 2003, 82 (10) : 1518 - 1520
  • [4] Terahertz quantum-cascade lasers
    Benjamin S. Williams
    [J]. Nature Photonics, 2007, 1 : 517 - 525
  • [5] Terahertz quantum-cascade lasers
    Williams, Benjamin S.
    [J]. NATURE PHOTONICS, 2007, 1 (09) : 517 - 525
  • [6] Terahertz Quantum-Cascade Lasers: From Design to Applications
    Lu, Xiang
    Roeben, Benjamin
    Pistore, Valentino
    Biermann, Klaus
    Luna, Esperanza
    Wienold, Martin
    Huebers, Heinz-Wilhelm
    Wubs, Jente R.
    van Helden, Jean-Pierre H.
    Gellie, Pierre
    Schrottke, Lutz
    [J]. IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2024, 14 (05) : 579 - 591
  • [7] Influence of doping on the performance of terahertz quantum-cascade lasers
    Benz, A.
    Fasching, G.
    Andrews, A. M.
    Martl, M.
    Unterrainer, K.
    Roch, T.
    Schrenk, W.
    Golka, S.
    Strasser, G.
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (10)
  • [8] Design issues and physics for high-performance quantum-cascade lasers
    Masselink, W. T.
    Semtsiv, M. P.
    Elagin, M.
    Flores, Y. V.
    Monastyrskyi, G.
    Kurlov, S.
    Kischkat, J.
    [J]. TECHNOLOGIES FOR OPTICAL COUNTERMEASURES X; AND HIGH-POWER LASERS 2013: TECHNOLOGY AND SYSTEMS, 2013, 8898
  • [9] High-power terahertz quantum-cascade lasers
    Williams, BS
    Kumar, S
    Hu, Q
    Reno, JL
    [J]. ELECTRONICS LETTERS, 2006, 42 (02) : 89 - 91
  • [10] Terahertz microcavity quantum-cascade lasers
    Fasching, G
    Benz, A
    Unterrainer, K
    Zobl, R
    Andrews, AM
    Roch, T
    Schrenk, W
    Strasser, G
    [J]. APPLIED PHYSICS LETTERS, 2005, 87 (21) : 1 - 3