Equivalence of two conjectures on equitable coloring of graphs

被引:0
|
作者
Bor-Liang Chen
Ko-Wei Lih
Chih-Hung Yen
机构
[1] National Taichung Institute of Technology,Department of Business Administration
[2] Academia Sinica,Institute of Mathematics
[3] National Chiayi University,Department of Applied Mathematics
来源
关键词
Equitable coloring; Maximum coloring; -equitable graph; Maximum degree; Independence number;
D O I
暂无
中图分类号
学科分类号
摘要
A graph G is said to be equitably k-colorable if there exists a proper k-coloring of G such that the sizes of any two color classes differ by at most one. Let Δ(G) denote the maximum degree of a vertex in G. Two Brooks-type conjectures on equitable Δ(G)-colorability have been proposed in Chen and Yen (Discrete Math., 2011) and Kierstead and Kostochka (Combinatorica 30:201–216, 2010) independently. We prove the equivalence of these conjectures.
引用
收藏
页码:501 / 504
页数:3
相关论文
共 50 条
  • [1] Equivalence of two conjectures on equitable coloring of graphs
    Chen, Bor-Liang
    Lih, Ko-Wei
    Yen, Chih-Hung
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (04) : 501 - 504
  • [2] Equitable Δ-coloring of graphs
    Chen, Bor-Liang
    Yen, Chih-Hung
    [J]. DISCRETE MATHEMATICS, 2012, 312 (09) : 1512 - 1517
  • [3] Domination Equitable Coloring of graphs
    Haribabu, Rebekal
    Arul, Sharmila Mary
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1417 - 1420
  • [4] Equitable Coloring of Random Graphs
    Krivelevich, Michael
    Patkos, Balazs
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2009, 35 (01) : 83 - 99
  • [5] Equitable Coloring for Union of Graphs
    Jency, K. Loura
    Raj, L. Benedict Michael
    [J]. JOURNAL OF ALGEBRAIC STATISTICS, 2022, 13 (02) : 116 - 120
  • [6] Equitable list coloring of graphs
    Wang, WF
    Lih, KW
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (04): : 747 - 759
  • [7] On equitable coloring of bipartite graphs
    Lih, KW
    Wu, PL
    [J]. DISCRETE MATHEMATICS, 1996, 151 (1-3) : 155 - 160
  • [8] Note on equitable coloring of graphs
    Karthick, T.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 59 : 251 - 259
  • [9] On the conjectures of neighbor locating coloring of graphs
    Mojdeh, Doost Ali
    [J]. THEORETICAL COMPUTER SCIENCE, 2022, 922 : 300 - 307
  • [10] EQUITABLE COLORING OF SPARSE PLANAR GRAPHS
    Luo, Rong
    Sereni, Jean-Sebastien
    Stephens, D. Christopher
    Yu, Gexin
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (04) : 1572 - 1583