Equitable list coloring of graphs

被引:17
|
作者
Wang, WF [1 ]
Lih, KW
机构
[1] Zhejiang Normal Univ, Dept Math, Zhejiang 321004, Peoples R China
[2] Acad Sinica, Inst Math, Taipei 115, Taiwan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2004年 / 8卷 / 04期
关键词
list coloring; choosability; equitable coloring;
D O I
10.11650/twjm/1500407716
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G is equitably k-choosable if, for any k-uniform list assignment L, G admits a proper coloring pi such that pi(nu) is an element of L(nu) for all nu is an element of V(G) and each color appears on at most [\G\/k] vertices. It was conjectured in [8] that every graph G with maximum degree Delta is equitably k-choosable whenever k greater than or equal to Delta + 1. We prove the conjecture for the following cases: (i) Delta less than or equal to 3; (ii) k greater than or equal to (Delta - 1)(2). Moreover, equitably 2-choosable graphs are completely characterized.
引用
收藏
页码:747 / 759
页数:13
相关论文
共 50 条
  • [1] Equitable List Coloring of Graphs with Bounded Degree
    Kierstead, H. A.
    Kostochka, A. V.
    [J]. JOURNAL OF GRAPH THEORY, 2013, 74 (03) : 309 - 334
  • [2] Equitable list-coloring for graphs for maximum Degree 3
    Pelsmajer, MJ
    [J]. JOURNAL OF GRAPH THEORY, 2004, 47 (01) : 1 - 8
  • [3] Equitable list tree-coloring of bounded treewidth graphs
    Li, Yan
    Zhang, Xin
    [J]. THEORETICAL COMPUTER SCIENCE, 2021, 855 : 61 - 67
  • [4] Equitable Δ-coloring of graphs
    Chen, Bor-Liang
    Yen, Chih-Hung
    [J]. DISCRETE MATHEMATICS, 2012, 312 (09) : 1512 - 1517
  • [5] A list analogue of equitable coloring
    Kostochka, AV
    Pelsmajer, MJ
    West, DB
    [J]. JOURNAL OF GRAPH THEORY, 2003, 44 (03) : 166 - 177
  • [6] Equitable List Coloring and Treewidth
    Pelsmajer, Michael J.
    [J]. JOURNAL OF GRAPH THEORY, 2009, 61 (02) : 127 - 139
  • [7] Total Equitable List Coloring
    Kaul, Hemanshu
    Mudrock, Jeffrey A.
    Pelsmajer, Michael J.
    [J]. GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1637 - 1649
  • [8] Total Equitable List Coloring
    Hemanshu Kaul
    Jeffrey A. Mudrock
    Michael J. Pelsmajer
    [J]. Graphs and Combinatorics, 2018, 34 : 1637 - 1649
  • [9] Domination Equitable Coloring of graphs
    Haribabu, Rebekal
    Arul, Sharmila Mary
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1417 - 1420
  • [10] Equitable and equitable list colorings of graphs
    Zhu, Junlei
    Bu, Yuehua
    [J]. THEORETICAL COMPUTER SCIENCE, 2010, 411 (43) : 3873 - 3876