Equitable Δ-coloring of graphs

被引:18
|
作者
Chen, Bor-Liang [2 ]
Yen, Chih-Hung [1 ]
机构
[1] Natl Chiayi Univ, Dept Appl Math, Chiayi 60004, Taiwan
[2] Natl Taichung Inst Technol, Dept Business Adm, Taichung 40401, Taiwan
关键词
Equitable coloring; Maximum degree; Chromatic number; Bipartite graphs; Subcubic graphs;
D O I
10.1016/j.disc.2011.05.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a graph G consisting of a vertex set V (G) and an edge set E(G). Let Delta(G) and chi(G) denote the maximum degree and the chromatic number of G. respectively. We say that G is equitably Delta(G)-colorable if there exists a proper Delta(G)-coloring of G such that the sizes of any two color classes differ by at most one. Obviously, if G is equitably Delta(G)-colorable, then Delta(G) >= chi (G). Conversely, even if G satisfies A (G) >= chi(G), we cannot guarantee that G must be equitably A (G)-colorable. In 1994, the Equitable Delta-Coloring Conjecture (E Delta CC) asserts that a connected graph G with Delta(G) >= chi(G) is equitably Delta(G)-colorable if G is different from K-2n+1,K-2n+1 for all n >= 1. In this paper, we give necessary conditions for a graph G (not necessarily connected) with Delta(G) >= chi (G) to be equitably Delta(G)-colorable and prove that those necessary conditions are also sufficient conditions when G is a bipartite iv (3G) I graph, or G satisfies Delta(G) >= vertical bar V(G)vertical bar/3 + 1, or G satisfies Delta(G) <= 3. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1512 / 1517
页数:6
相关论文
共 50 条
  • [1] Domination Equitable Coloring of graphs
    Haribabu, Rebekal
    Arul, Sharmila Mary
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1417 - 1420
  • [2] Equitable Coloring of Random Graphs
    Krivelevich, Michael
    Patkos, Balazs
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2009, 35 (01) : 83 - 99
  • [3] Equitable list coloring of graphs
    Wang, WF
    Lih, KW
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (04): : 747 - 759
  • [4] Equitable Coloring for Union of Graphs
    Jency, K. Loura
    Raj, L. Benedict Michael
    [J]. JOURNAL OF ALGEBRAIC STATISTICS, 2022, 13 (02) : 116 - 120
  • [5] On equitable coloring of bipartite graphs
    Lih, KW
    Wu, PL
    [J]. DISCRETE MATHEMATICS, 1996, 151 (1-3) : 155 - 160
  • [6] Note on equitable coloring of graphs
    Karthick, T.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 59 : 251 - 259
  • [7] EQUITABLE COLORING OF SPARSE PLANAR GRAPHS
    Luo, Rong
    Sereni, Jean-Sebastien
    Stephens, D. Christopher
    Yu, Gexin
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (04) : 1572 - 1583
  • [8] Equitable Edge Coloring of Some Graphs
    Vivik, Veninstine J.
    Girija, G.
    [J]. UTILITAS MATHEMATICA, 2015, 96 : 27 - 32
  • [9] Power Dominator Equitable Coloring of Graphs
    Arul, Sharmila Mary
    Thomas, Diana Grace
    Kharub, Swati
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1421 - 1425
  • [10] On equitable near proper coloring of graphs
    Jose, Sabitha
    Samuel, Libin Chacko
    Naduvath, Sudev
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (01) : 131 - 143