Equivalence of two conjectures on equitable coloring of graphs

被引:4
|
作者
Chen, Bor-Liang [1 ]
Lih, Ko-Wei [2 ]
Yen, Chih-Hung [3 ]
机构
[1] Natl Taichung Inst Technol, Dept Business Adm, Taichung 40401, Taiwan
[2] Acad Sinica, Inst Math, Taipei 10617, Taiwan
[3] Natl Chiayi Univ, Dept Appl Math, Chiayi 60004, Taiwan
关键词
Equitable coloring; Maximum coloring; r-equitable graph; Maximum degree; Independence number;
D O I
10.1007/s10878-011-9429-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A graph G is said to be equitably k-colorable if there exists a proper k-coloring of G such that the sizes of any two color classes differ by at most one. Let Delta(G) denote the maximum degree of a vertex in G. Two Brooks-type conjectures on equitable Delta(G)-colorability have been proposed in Chen and Yen (Discrete Math., 2011) and Kierstead and Kostochka (Combinatorica 30:201-216, 2010) independently. We prove the equivalence of these conjectures.
引用
收藏
页码:501 / 504
页数:4
相关论文
共 50 条
  • [1] Equivalence of two conjectures on equitable coloring of graphs
    Bor-Liang Chen
    Ko-Wei Lih
    Chih-Hung Yen
    [J]. Journal of Combinatorial Optimization, 2013, 25 : 501 - 504
  • [2] Equitable Δ-coloring of graphs
    Chen, Bor-Liang
    Yen, Chih-Hung
    [J]. DISCRETE MATHEMATICS, 2012, 312 (09) : 1512 - 1517
  • [3] Domination Equitable Coloring of graphs
    Haribabu, Rebekal
    Arul, Sharmila Mary
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1417 - 1420
  • [4] Equitable Coloring of Random Graphs
    Krivelevich, Michael
    Patkos, Balazs
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2009, 35 (01) : 83 - 99
  • [5] Equitable Coloring for Union of Graphs
    Jency, K. Loura
    Raj, L. Benedict Michael
    [J]. JOURNAL OF ALGEBRAIC STATISTICS, 2022, 13 (02) : 116 - 120
  • [6] Equitable list coloring of graphs
    Wang, WF
    Lih, KW
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (04): : 747 - 759
  • [7] On equitable coloring of bipartite graphs
    Lih, KW
    Wu, PL
    [J]. DISCRETE MATHEMATICS, 1996, 151 (1-3) : 155 - 160
  • [8] Note on equitable coloring of graphs
    Karthick, T.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 59 : 251 - 259
  • [9] On the conjectures of neighbor locating coloring of graphs
    Mojdeh, Doost Ali
    [J]. THEORETICAL COMPUTER SCIENCE, 2022, 922 : 300 - 307
  • [10] EQUITABLE COLORING OF SPARSE PLANAR GRAPHS
    Luo, Rong
    Sereni, Jean-Sebastien
    Stephens, D. Christopher
    Yu, Gexin
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (04) : 1572 - 1583