Cacti with maximal general sum-connectivity index

被引:0
|
作者
Shahid Zaman
机构
[1] University of Sialkot,Department of Mathematics
[2] Central China Normal University,Faculty of Mathematics and Statistics
关键词
General sum-connectivity index; Cactus; Pendent vertex; Perfect matching; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let V(G) and E(G) be, respectively, the vertex set and edge set of a graph G. The general sum-connectivity index of a graph G is denoted by χα(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _\alpha (G)$$\end{document} and is defined as ∑uv∈E(G)(du+dv)α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum \limits _{uv\in E(G)}(d_u+d_v)^\alpha $$\end{document}, where uv is an edge that connect the vertices u,v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u,v\in V(G)$$\end{document}, du\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_u$$\end{document} is the degree of a vertex u and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is any non-zero real number. A cactus is a graph in which any two cycles have at most one common vertex. Let Cn,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {C}_{n,t}$$\end{document} denote the class of all cacti with order n and t pendant vertices. In this paper, a maximum general sum-connectivity index (χα(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _\alpha (G)$$\end{document}, α>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >1$$\end{document}) of a cacti graph with order n and t pendant vertices is considered. We determine the maximum general sum-connectivity index of n-vertex cacti graph. Based on our obtained results, we characterize the cactus with a perfect matching having the maximum general sum-connectivity index.
引用
收藏
页码:147 / 160
页数:13
相关论文
共 50 条
  • [1] Cacti with maximal general sum-connectivity index
    Zaman, Shahid
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 65 (1-2) : 147 - 160
  • [2] On the general sum-connectivity index and general Randić index of cacti
    Shehnaz Akhter
    Muhammad Imran
    Zahid Raza
    Journal of Inequalities and Applications, 2016
  • [3] On the general sum-connectivity index and general Randic index of cacti
    Akhter, Shehnaz
    Imran, Muhammad
    Raza, Zahid
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [4] On the sum-connectivity index of cacti
    Ma, Feiying
    Deng, Hanyuan
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (1-2) : 497 - 507
  • [5] On general sum-connectivity index
    Bo Zhou
    Nenad Trinajstić
    Journal of Mathematical Chemistry, 2010, 47 : 210 - 218
  • [6] On general sum-connectivity index
    Zhou, Bo
    Trinajstic, Nenad
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 47 (01) : 210 - 218
  • [7] Progress in General Sum-Connectivity Index
    Peng Shuying
    2011 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND CONTROL (ICECC), 2011, : 2185 - 2188
  • [8] On the general sum-connectivity index of trees
    Du, Zhibin
    Zhou, Bo
    Trinajstic, Nenad
    APPLIED MATHEMATICS LETTERS, 2011, 24 (03) : 402 - 405
  • [9] SOME INEQUALITIES FOR GENERAL SUM-CONNECTIVITY INDEX
    Matejic, M. M.
    Milovanovic, I. Z.
    Milovanovic, E., I
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2020, 38 (1-2): : 189 - 200
  • [10] On the general sum-connectivity index of tricyclic graphs
    Zhu Z.
    Lu H.
    Journal of Applied Mathematics and Computing, 2016, 51 (1-2) : 177 - 188