On a critical Schrödinger system involving Hardy terms

被引:0
|
作者
Zhenyu Guo
Senping Luo
Wenming Zou
机构
[1] Liaoning Normal University,School of Mathematics
[2] Jiangxi Normal University,School of Mathematics and statistics
[3] Tsinghua University,Department of Mathematical Sciences
关键词
35B38; 35J10; 35J15; 35J20; 35J60; 49J40;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns an elliptic system with critical exponents: -Δuj-λj|x|2uj=uj2∗-1+∑k≠jβjkαjkujαjk-1ukαkj,x∈RN,uj∈D1,2(RN),uj>0inRN\{0},j=1,…,r,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u_j-\frac{\lambda _j}{|x|^2}u_j=u_j^{2^*-1}+\sum \limits _{k\ne j}\beta _{jk}\alpha _{jk}u_j^{\alpha _{jk}-1}u_k^{\alpha _{kj}},\;\;x\in {{\mathbb {R}}}^N,\\ u_j\in D^{1,2}({{\mathbb {R}}}^N),\quad u_j>0 \;\; \hbox {in} \quad {{\mathbb {R}}}^N\setminus \{0\},\quad j=1, \ldots ,r,\end{array}\right. } \end{aligned}$$\end{document}where N≥3,r≥2,2∗=2NN-2,λj∈(0,(N-2)24)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3, r\ge 2, 2^*=\frac{2N}{N-2}, \lambda _j\in (0, \frac{(N-2)^2}{4})$$\end{document} for all j=1,…,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ j=1, \ldots ,r $$\end{document}; βjk=βkj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{jk}=\beta _{kj}$$\end{document}; αjk>1,αkj>1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{jk}>1, \alpha _{kj}>1,$$\end{document} and αjk+αkj=2∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{jk}+\alpha _{kj}=2^* $$\end{document} for all k≠j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ne j$$\end{document}. Note that the nonlinearities uj2∗-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_j^{2^*-1}$$\end{document} and the coupling terms are all critical in arbitrary dimension N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3 $$\end{document}. The signs of the coupling constants βij\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{ij}$$\end{document} are decisive for the existence of the ground-state solutions. We show that the critical system with r≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 3$$\end{document} has a positive ground-state solution for all βjk>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{jk}>0$$\end{document} with some constraint on λj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _j$$\end{document}. However, there is no ground-state solution when all βjk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{jk}$$\end{document} are negative. It is also proved that the positive solution of the system is radially symmetric. Furthermore, we obtain an uniqueness theorem for the case r≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 3$$\end{document} with N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=4$$\end{document} and an existence theorem for the case r=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=2$$\end{document} with general coupling exponents.
引用
收藏
相关论文
共 50 条
  • [21] On Isomorphisms of Hardy Spaces Associated with Schrödinger Operators
    Jacek Dziubański
    Jacek Zienkiewicz
    Journal of Fourier Analysis and Applications, 2013, 19 : 447 - 456
  • [22] Positive Ground State Solutions for Schrödinger–Poisson System Involving a Negative Nonlocal Term and Critical Exponent
    Li-Jun Zhu
    Jia-Feng Liao
    Jiu Liu
    Mediterranean Journal of Mathematics, 2022, 19
  • [23] Semilinear Schrödinger equations with Hardy potentials involving the distance to a boundary submanifold and gradient source nonlinearities
    Gkikas, Konstantinos T.
    Paschalis, Miltiadis
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2025, 32 (01):
  • [24] Critical Schrödinger–Bopp–Podolsky System with Prescribed Mass
    Yiqing Li
    Binlin Zhang
    The Journal of Geometric Analysis, 2023, 33
  • [25] Normalized Solutions for the Critical Schrödinger–Bopp–Podolsky System
    Xueqin Peng
    Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [26] New applications of Schrödinger type inequalities in the Schrödingerean Hardy space
    Yong Lu
    Liang Kou
    Jianguo Sun
    Guodong Zhao
    Wenshan Wang
    Qilong Han
    Journal of Inequalities and Applications, 2017
  • [27] ON THE WEIGHTED DIRICHLET EIGENVALUES OF HARDY OPERATORS INVOLVING CRITICAL GRADIENT TERMS
    Wang, Ying
    Qiu, Yanjing
    Yin, Qingping
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (04) : 1159 - 1179
  • [28] Normalized solutions for nonlinear Schrödinger equation involving potential and Sobolev critical exponent
    Jin, Zhen-Feng
    Zhang, Weimin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 535 (02)
  • [29] Fractional Kirchhoff–Choquard equation involving Schrödinger term and upper critical exponent
    Yanbin Sang
    Sihua Liang
    The Journal of Geometric Analysis, 2022, 32
  • [30] Nontrivial solution for Schrödinger–Poisson equations involving the fractional Laplacian with critical exponent
    Xiaojing Feng
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115