On Isomorphisms of Hardy Spaces Associated with Schrödinger Operators

被引:0
|
作者
Jacek Dziubański
Jacek Zienkiewicz
机构
[1] Uniwersytet Wrocławski,Instytut Matematyczny
关键词
Hardy spaces; Schrödinger operators; 42B30; 35J10; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
Let L=−Δ+V is a Schrödinger operator on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{d}$\end{document}, d≥3, V≥0. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}_{L}$\end{document} denote the Hardy space associated with L. We shall prove that there is an L-harmonic function w, 0<δ≤w(x)≤C, such that the mapping \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_L^1 \ni f\mapsto wf\in H^1\bigl(\mathbb{R}^d\bigr) $$\end{document} is an isomorphism from the Hardy space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{L}^{1}$\end{document} onto the classical Hardy space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}(\mathbb{R}^{d})$\end{document} if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta^{-1}V(x)=-c_{d}\int_{\mathbb{R}^{d}} |x-y|^{2-d} V(y) dy$\end{document} belongs to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty}(\mathbb{R}^{d})$\end{document}.
引用
收藏
页码:447 / 456
页数:9
相关论文
共 50 条