On Isomorphisms of Hardy Spaces Associated with Schrödinger Operators

被引:0
|
作者
Jacek Dziubański
Jacek Zienkiewicz
机构
[1] Uniwersytet Wrocławski,Instytut Matematyczny
关键词
Hardy spaces; Schrödinger operators; 42B30; 35J10; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
Let L=−Δ+V is a Schrödinger operator on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{d}$\end{document}, d≥3, V≥0. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}_{L}$\end{document} denote the Hardy space associated with L. We shall prove that there is an L-harmonic function w, 0<δ≤w(x)≤C, such that the mapping \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_L^1 \ni f\mapsto wf\in H^1\bigl(\mathbb{R}^d\bigr) $$\end{document} is an isomorphism from the Hardy space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{L}^{1}$\end{document} onto the classical Hardy space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}(\mathbb{R}^{d})$\end{document} if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta^{-1}V(x)=-c_{d}\int_{\mathbb{R}^{d}} |x-y|^{2-d} V(y) dy$\end{document} belongs to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty}(\mathbb{R}^{d})$\end{document}.
引用
收藏
页码:447 / 456
页数:9
相关论文
共 50 条
  • [31] Carleson measures, BMO spaces and balayages associated to Schrdinger operators
    CHEN Peng
    DUONG XuanThinh
    LI Ji
    SONG Liang
    YAN LiXin
    Science China Mathematics, 2017, 60 (11) : 2077 - 2092
  • [32] Extension of Campanato–Sobolev type spaces associated with Schrödinger operators
    Jizheng Huang
    Pengtao Li
    Yu Liu
    Annals of Functional Analysis, 2020, 11 : 314 - 333
  • [33] Variable Hardy spaces associated with Schrödinger operators on strongly Lipschitz domains with their applications to regularity for inhomogeneous Dirichlet problems
    Xiong Liu
    Dachun Yang
    Sibei Yang
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 925 - 957
  • [34] Schrödinger Operators with Reverse Hölder Class Potentials in the Dunkl Setting and Their Hardy Spaces
    Agnieszka Hejna
    Journal of Fourier Analysis and Applications, 2021, 27
  • [35] Hardy Type Estimates for Riesz Transforms Associated with Schrdinger Operators on the Heisenberg Group
    Yu Liu
    Guobin Tang
    Analysis in Theory and Applications, 2016, 32 (01) : 78 - 89
  • [36] A spectral multiplier theorem for Hardy spaces associated with Schrödinger operator on the Heisenberg group
    Nan Hu
    Jiman Zhao
    Journal of Pseudo-Differential Operators and Applications, 2022, 13
  • [37] Bilinear operators associated with generalized Schrödinger operators
    Nan Hu
    Yu Liu
    Journal of Pseudo-Differential Operators and Applications, 2019, 10 : 837 - 854
  • [38] Schrödinger type operators on generalized Morrey spaces
    Pengtao Li
    Xin Wan
    Chuangyuan Zhang
    Journal of Inequalities and Applications, 2015
  • [39] Pseudodifference Operators on Weighted Spaces, and Applications to Discrete Schrödinger Operators
    Vladimir S. Rabinovich
    Steffen Roch
    Acta Applicandae Mathematica, 2004, 84 : 55 - 96
  • [40] Function Spaces Associated with Schrödinger Operators: The Pöschl-Teller Potential
    Gestur Ólafsson
    Shijun Zheng
    Journal of Fourier Analysis and Applications, 2006, 12 : 653 - 674