Critical Schrödinger–Bopp–Podolsky System with Prescribed Mass

被引:0
|
作者
Yiqing Li
Binlin Zhang
机构
[1] Shandong University of Science and Technology,College of Mathematics and Systems Science
来源
关键词
Schrödinger–Bopp–Podolsky system; Normalized solution; Asymptotic behavior; Mountain pass theorem; 35B33; 35J20; 35J61;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the critical Schrödinger–Bopp–Podolsky system with prescribed mass as follows: -Δu+ϕu=λu+μ|u|p-2u+u5inR3,-Δϕ+Δ2ϕ=4πu2inR3,∫R3u2dx=m2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{l} -\Delta u+ \phi u=\lambda u+\mu |u|^{p-2}u+u^{5}\ \ \text{ in }\ {\mathbb R}^3,\\ -\Delta \phi +\Delta ^2\phi =4\pi u^2\ \ \text{ in }\ {\mathbb R}^3,\\ \int _{{\mathbb R}^3}u^2\textrm{d}x=m^2, \end{array}\right. \end{aligned}$$\end{document}where λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in {\mathbb R}$$\end{document}, m>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>0$$\end{document}, μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >0$$\end{document} is a parameter, 2<p<6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<p<6$$\end{document}. For p∈(10/3,6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (10/3, 6)$$\end{document}, applying Lagrange multipliers argument and mountain pass theorem, we obtain the existence of positive normalized ground state solutions for above system, and then asymptotic behavior of the solution is also detected. For p∈(2,10/3]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (2, 10/3]$$\end{document}, we obtain the existence of a normalized ground state solution for above system by combining mountain pass theorem with Lebesgue dominated convergence theorem. Finally we prove the existence of infinitely many normalized solutions for above system by the symmetric mountain pass theorem.
引用
收藏
相关论文
共 50 条