Critical Schrödinger–Bopp–Podolsky System with Prescribed Mass

被引:0
|
作者
Yiqing Li
Binlin Zhang
机构
[1] Shandong University of Science and Technology,College of Mathematics and Systems Science
来源
关键词
Schrödinger–Bopp–Podolsky system; Normalized solution; Asymptotic behavior; Mountain pass theorem; 35B33; 35J20; 35J61;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the critical Schrödinger–Bopp–Podolsky system with prescribed mass as follows: -Δu+ϕu=λu+μ|u|p-2u+u5inR3,-Δϕ+Δ2ϕ=4πu2inR3,∫R3u2dx=m2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{l} -\Delta u+ \phi u=\lambda u+\mu |u|^{p-2}u+u^{5}\ \ \text{ in }\ {\mathbb R}^3,\\ -\Delta \phi +\Delta ^2\phi =4\pi u^2\ \ \text{ in }\ {\mathbb R}^3,\\ \int _{{\mathbb R}^3}u^2\textrm{d}x=m^2, \end{array}\right. \end{aligned}$$\end{document}where λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in {\mathbb R}$$\end{document}, m>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>0$$\end{document}, μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >0$$\end{document} is a parameter, 2<p<6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<p<6$$\end{document}. For p∈(10/3,6)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (10/3, 6)$$\end{document}, applying Lagrange multipliers argument and mountain pass theorem, we obtain the existence of positive normalized ground state solutions for above system, and then asymptotic behavior of the solution is also detected. For p∈(2,10/3]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (2, 10/3]$$\end{document}, we obtain the existence of a normalized ground state solution for above system by combining mountain pass theorem with Lebesgue dominated convergence theorem. Finally we prove the existence of infinitely many normalized solutions for above system by the symmetric mountain pass theorem.
引用
收藏
相关论文
共 50 条
  • [41] Profiles and Quantization of the Blow Up Mass for Critical Nonlinear Schrödinger Equation
    Frank Merle
    Pierre Raphael
    Communications in Mathematical Physics, 2005, 253 : 675 - 704
  • [42] Normalized ground states for the Sobolev critical Schrödinger equation with at least mass critical growth
    Li, Quanqing
    Radulescu, Vicentiu D.
    Zhang, Wen
    NONLINEARITY, 2024, 37 (02)
  • [43] A planar Schrödinger–Newton system with Trudinger–Moser critical growth
    Zhisu Liu
    Vicenţiu D. Rădulescu
    Jianjun Zhang
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [44] A Schrödinger–Poisson System with the Critical Growth on the First Heisenberg Group
    Zhenyu Guo
    Qingying Shi
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2023, 58 : 196 - 207
  • [45] Orbital stability and concentration of standing-wave solutions to a nonlinear Schrödinger system with mass critical exponents
    Daniele Garrisi
    Tianxiang Gou
    Nonlinear Differential Equations and Applications NoDEA, 2023, 30
  • [46] Well-Posedness for Multicomponent Schrödinger–gKdV Systems and Stability of Solitary Waves with Prescribed Mass
    Santosh Bhattarai
    Adán J. Corcho
    Mahendra Panthee
    Journal of Dynamics and Differential Equations, 2018, 30 : 845 - 881
  • [47] Critical Schrodinger-Bopp-Podolsky systems: solutions in the semiclassical limit
    Damian, Heydy M. Santos
    Siciliano, Gaetano
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (06)
  • [48] A multiplicity result for a double perturbed Schrödinger-Bopp-Po dolsky-Pro ca system
    Talluri, Matteo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (02)
  • [49] NORMALIZED SOLUTIONS FOR SOBOLEV CRITICAL SCHRODINGER-BOPP-PODOLSKY SYSTEMS
    Li, Yuxin
    Chang, Xiaojun
    Feng, Zhaosheng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (56) : 1 - 19
  • [50] On the Fractional Schrödinger Equations with Critical Nonlinearity
    Khaled Khachnaoui
    Results in Mathematics, 2023, 78