Hall Algebras and Quantum Symmetric Pairs II: Reflection Functors

被引:0
|
作者
Ming Lu
Weiqiang Wang
机构
[1] Sichuan University,Department of Mathematics
[2] University of Virginia,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Recently the authors initiated an ı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\imath $$\end{document}Hall algebra approach to (universal) ı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\imath $$\end{document}quantum groups arising from quantum symmetric pairs. In this paper we construct and study BGP type reflection functors which lead to isomorphisms of the ı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\imath $$\end{document}Hall algebras associated to acyclic ı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\imath $$\end{document}quivers. For Dynkin quivers, these symmetries on ı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\imath $$\end{document}Hall algebras induce automorphisms of universal ı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\imath $$\end{document}quantum groups, which are shown to satisfy the braid group relations associated to the restricted Weyl group of a symmetric pair. This leads to a conceptual construction of q-root vectors and PBW bases for (universal) quasi-split ı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\imath $$\end{document}quantum groups of ADE type.
引用
收藏
页码:799 / 855
页数:56
相关论文
共 50 条