Hall Algebras and Quantum Symmetric Pairs II: Reflection Functors

被引:0
|
作者
Ming Lu
Weiqiang Wang
机构
[1] Sichuan University,Department of Mathematics
[2] University of Virginia,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Recently the authors initiated an ı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\imath $$\end{document}Hall algebra approach to (universal) ı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\imath $$\end{document}quantum groups arising from quantum symmetric pairs. In this paper we construct and study BGP type reflection functors which lead to isomorphisms of the ı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\imath $$\end{document}Hall algebras associated to acyclic ı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\imath $$\end{document}quivers. For Dynkin quivers, these symmetries on ı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\imath $$\end{document}Hall algebras induce automorphisms of universal ı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\imath $$\end{document}quantum groups, which are shown to satisfy the braid group relations associated to the restricted Weyl group of a symmetric pair. This leads to a conceptual construction of q-root vectors and PBW bases for (universal) quasi-split ı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\imath $$\end{document}quantum groups of ADE type.
引用
收藏
页码:799 / 855
页数:56
相关论文
共 50 条
  • [41] Symmetric multiplets in quantum algebras
    Kwek, LC
    Oh, CH
    Singh, K
    MODERN PHYSICS LETTERS A, 1996, 11 (27) : 2193 - 2198
  • [42] Symmetric Multiplets in Quantum Algebras
    Mod Phys Lett A, 27 (2193):
  • [43] Remarks on quantum symmetric algebras
    Chirvasitu, Alexandru
    Tucker-Simmons, Matthew
    JOURNAL OF ALGEBRA, 2014, 397 : 589 - 608
  • [44] Generalized Schur-Weyl dualities for quantum affine symmetric pairs and orientifold KLR algebras
    Appel, Andrea
    Przezdziecki, Tomasz
    ADVANCES IN MATHEMATICS, 2023, 435
  • [45] Quantum polynomial functors from e-Hecke pairs
    Valentin Buciumas
    Hankyung Ko
    Mathematische Zeitschrift, 2019, 292 : 1 - 31
  • [46] Quantum polynomial functors from e-Hecke pairs
    Buciumas, Valentin
    Ko, Hankyung
    MATHEMATISCHE ZEITSCHRIFT, 2019, 292 (1-2) : 1 - 31
  • [47] Affine flag varieties and quantum symmetric pairs, II. Multiplication formula
    Fan, Zhaobing
    Li, Yiqiang
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (10) : 4311 - 4347
  • [48] Quantum cluster characters of Hall algebras
    Arkady Berenstein
    Dylan Rupel
    Selecta Mathematica, 2015, 21 : 1121 - 1176
  • [49] Quantum cluster characters of Hall algebras
    Berenstein, Arkady
    Rupel, Dylan
    SELECTA MATHEMATICA-NEW SERIES, 2015, 21 (04): : 1121 - 1176
  • [50] Quantum symmetric pairs at roots of 1
    Bao, Huanchen
    Sale, Thomas
    ADVANCES IN MATHEMATICS, 2021, 380