Projective-injective modules, Serre functors and symmetric algebras

被引:44
|
作者
Mazorchuk, Volodymyr [1 ]
Stroppel, Catharina [2 ]
机构
[1] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[2] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1515/CRELLE.2008.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe Serre functors for (generalisations of) the category O associated with a semisimple complex Lie algebra. In our approach, projective-injective modules, that is modules which are both, projective and injective, play an important role. They control the Serre functor in the case of a quasi-hereditary algebra having a double centraliser with respect to a projective-injective module whose endomorphism ring is a symmetric algebra. As an application of the double centraliser property together with our description of Serre functors, we prove three conjectures of Khovanov about the projective-injective modules in the parabolic category O-0(mu)(SIn).
引用
收藏
页码:131 / 165
页数:35
相关论文
共 50 条