Modules with Cosupport and Injective Functors

被引:0
|
作者
Henrik Holm
机构
[1] University of Copenhagen,Department of Basic Sciences and Environment, Faculty of Life Sciences
来源
关键词
Algebraically compact; Coherent; Contravariantly finite; Cosupport; Cotorsion pairs; Covariantly finite; Covers; Direct limits; Envelopes; Equivalence; Filtered colimits; Flat functors; Functor category; Injective functors; Noetherian; Pure injective; Stability; Support; Primary 16E80; Secondary 16E30; 18E15; 18G05;
D O I
暂无
中图分类号
学科分类号
摘要
Several authors have studied the filtered colimit closure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varinjlim\mathcal{B}$\end{document} of a class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{B}$\end{document} of finitely presented modules. Lenzing called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varinjlim\mathcal{B}$\end{document} the category of modules with support in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{B}$\end{document}, and proved that it is equivalent to the category of flat objects in the functor category \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathcal{B}^\mathrm{op},\mathsf{Ab})$\end{document}. In this paper, we study the category \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$({\mathsf{Mod}\textnormal{-}R})^{\mathcal{B}}$\end{document} of modules with cosupport in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{B}$\end{document}. We show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$({\mathsf{Mod}\textnormal{-}R})^{\mathcal{B}}$\end{document} is equivalent to the category of injective objects in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathcal{B},\mathsf{Ab})$\end{document}, and thus recover a classical result by Jensen-Lenzing on pure injective modules. Works of Angeleri-Hügel, Enochs, Krause, Rada, and Saorín make it easy to discuss covering and enveloping properties of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$({\mathsf{Mod}\textnormal{-}R})^{\mathcal{B}}$\end{document}, and furthermore we compare the naturally associated notions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{B}$\end{document}-coherence and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{B}$\end{document}-noetherianness. Finally, we prove a number of stability results for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varinjlim\mathcal{B}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$({\mathsf{Mod}\textnormal{-}R})^{\mathcal{B}}$\end{document}. Our applications include a generalization of a result by Gruson-Jensen and Enochs on pure injective envelopes of flat modules.
引用
收藏
页码:543 / 560
页数:17
相关论文
共 50 条
  • [1] Modules with Cosupport and Injective Functors
    Holm, Henrik
    ALGEBRAS AND REPRESENTATION THEORY, 2010, 13 (05) : 543 - 560
  • [2] Injective modules and torsion functors
    Pham Hung Quy
    Rohrer, Fred
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (01) : 285 - 298
  • [3] Projective-injective modules, Serre functors and symmetric algebras
    Mazorchuk, Volodymyr
    Stroppel, Catharina
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 616 : 131 - 165
  • [4] LOCALIZATION FUNCTORS AND COSUPPORT IN DERIVED CATEGORIES OF COMMUTATIVE NOETHERIAN RINGS
    Nakamura, Tsutomu
    Yoshino, Yuji
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 296 (02) : 405 - 435
  • [5] On generalized injective modules and almost injective modules
    Fuchigami, Hayate
    Kuratomi, Yosuke
    Shibata, Yoshiharu
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (02)
  • [6] ON INJECTIVE MODULES
    HARUI, H
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1969, 21 (04) : 574 - +
  • [7] FLAT AND SEMI-INJECTIVE FUNCTORS
    HOPPNER, M
    LENZING, H
    MANUSCRIPTA MATHEMATICA, 1977, 20 (04) : 315 - 322
  • [8] INJECTIVE MODULES
    HANNA, A
    AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (03): : 297 - 298
  • [9] τ-injective modules
    Charalambides, Stelios
    Clark, John
    MODULES AND COMODULES, 2008, : 143 - 168
  • [10] Cover for modules and injective modules
    Amiri, N.
    TURKISH JOURNAL OF MATHEMATICS, 2008, 32 (01) : 111 - 116