Modules with Cosupport and Injective Functors

被引:0
|
作者
Henrik Holm
机构
[1] University of Copenhagen,Department of Basic Sciences and Environment, Faculty of Life Sciences
来源
关键词
Algebraically compact; Coherent; Contravariantly finite; Cosupport; Cotorsion pairs; Covariantly finite; Covers; Direct limits; Envelopes; Equivalence; Filtered colimits; Flat functors; Functor category; Injective functors; Noetherian; Pure injective; Stability; Support; Primary 16E80; Secondary 16E30; 18E15; 18G05;
D O I
暂无
中图分类号
学科分类号
摘要
Several authors have studied the filtered colimit closure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varinjlim\mathcal{B}$\end{document} of a class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{B}$\end{document} of finitely presented modules. Lenzing called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varinjlim\mathcal{B}$\end{document} the category of modules with support in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{B}$\end{document}, and proved that it is equivalent to the category of flat objects in the functor category \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathcal{B}^\mathrm{op},\mathsf{Ab})$\end{document}. In this paper, we study the category \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$({\mathsf{Mod}\textnormal{-}R})^{\mathcal{B}}$\end{document} of modules with cosupport in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{B}$\end{document}. We show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$({\mathsf{Mod}\textnormal{-}R})^{\mathcal{B}}$\end{document} is equivalent to the category of injective objects in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathcal{B},\mathsf{Ab})$\end{document}, and thus recover a classical result by Jensen-Lenzing on pure injective modules. Works of Angeleri-Hügel, Enochs, Krause, Rada, and Saorín make it easy to discuss covering and enveloping properties of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$({\mathsf{Mod}\textnormal{-}R})^{\mathcal{B}}$\end{document}, and furthermore we compare the naturally associated notions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{B}$\end{document}-coherence and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{B}$\end{document}-noetherianness. Finally, we prove a number of stability results for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varinjlim\mathcal{B}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$({\mathsf{Mod}\textnormal{-}R})^{\mathcal{B}}$\end{document}. Our applications include a generalization of a result by Gruson-Jensen and Enochs on pure injective envelopes of flat modules.
引用
收藏
页码:543 / 560
页数:17
相关论文
共 50 条
  • [21] GENERALIZATIONS OF INJECTIVE MODULES
    Sanchez Campos, Esperanza
    Smith, Patrick F.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2012, 11 : 96 - 110
  • [22] On injective and divisible modules
    Smith, Patrick F.
    ARABIAN JOURNAL OF MATHEMATICS, 2012, 1 (01) : 127 - 137
  • [23] ON GENERALIZATIONS OF INJECTIVE MODULES
    Turkmen, Burcu Nisanci
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2016, 99 (113): : 249 - 255
  • [24] SIMPLE INJECTIVE MODULES
    ANDERSON, FW
    MATHEMATICA SCANDINAVICA, 1978, 43 (02) : 204 - 210
  • [25] CONEAT INJECTIVE MODULES
    Hamid, Mohanad Farhan
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2019, 31 (02) : 201 - 211
  • [26] On τ-injective hulls of modules
    Crivei, S
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2002, 61 (1-2): : 145 - 155
  • [27] TORSIONFREE INJECTIVE MODULES
    TEPLY, ML
    PACIFIC JOURNAL OF MATHEMATICS, 1969, 28 (02) : 441 - &
  • [28] Strongly injective modules
    Turkmen, Ergul
    Turkmen, Burcu Nisanci
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 1 - 7
  • [29] INJECTIVE DIMENSION OF ALEPH-INJECTIVE MODULES
    BORATYNSKI, M
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1971, 19 (08): : 705 - +
  • [30] QUASI-INJECTIVE AND POORLY INJECTIVE MODULES
    TUGANBAEV, AA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1977, (02): : 61 - 64