A virtual element method for the acoustic vibration problem

被引:0
|
作者
Lourenço Beirão da Veiga
David Mora
Gonzalo Rivera
Rodolfo Rodríguez
机构
[1] Università di Milano-Bicocca,Dipartimento di Matematica e Applicazioni
[2] Universidad del Bío-Bío,GIMNAP, Departamento de Matemática
[3] Universidad de Concepción,Centro de Investigación en Ingeniería Matemática (CI2MA)
[4] Universidad de Concepción,CI2MA, Departamento de Ingeniería Matemática
来源
Numerische Mathematik | 2017年 / 136卷
关键词
65N30; 65N25; 70J30; 76M25;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze in this paper a virtual element approximation for the acoustic vibration problem. We consider a variational formulation relying only on the fluid displacement and propose a discretization by means of H(div)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {H}(\mathrm {div})$$\end{document} virtual elements with vanishing rotor. Under standard assumptions on the meshes, we show that the resulting scheme provides a correct approximation of the spectrum and prove optimal order error estimates. With this end, we prove approximation properties of the proposed virtual elements. We also report some numerical tests supporting our theoretical results.
引用
收藏
页码:725 / 763
页数:38
相关论文
共 50 条
  • [41] A pressure-robust virtual element method for the Stokes problem
    Wang, Gang
    Mu, Lin
    Wang, Ying
    He, Yinnian
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 382
  • [42] A linear virtual element method for the Kirchhoff plate buckling problem
    Meng, Jian
    Mei, Liquan
    APPLIED MATHEMATICS LETTERS, 2020, 103 (103)
  • [43] FINITE ELEMENT APPROXIMATION OF EIGENVALUE PROBLEM FOR A COUPLED VIBRATION BETWEEN ACOUSTIC FIELD AND PLATE
    L. Deng
    T. Kako(Department of Computer Science and information Mathematics
    JournalofComputationalMathematics, 1997, (03) : 265 - 278
  • [44] Finite element approximation of eigenvalue problem for a coupled vibration between acoustic field and plate
    Deng, L
    Kako, T
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1997, 15 (03) : 265 - 278
  • [45] Spectral Element Method for the Elastic/Acoustic Waveguide Problem in Anisotropic Metamaterials
    Ge, An Qi
    Zhuang, Ming Wei
    Liu, Jie
    Liu, Qing Huo
    IEEE ACCESS, 2021, 9 : 153824 - 153837
  • [46] A Virtual Element Method for the Elasticity Spectral Problem Allowing for Small Edges
    Amigo D.
    Lepe F.
    Rivera G.
    Journal of Scientific Computing, 2023, 97 (03)
  • [47] Virtual element method for the Helmholtz transmission eigenvalue problem of anisotropic media
    Meng, Jian
    Mei, Liquan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (08): : 1493 - 1529
  • [48] A virtual element method for the Cahn-Hilliard problem in mixed form
    Liu, Xin
    Chen, Zhangxin
    APPLIED MATHEMATICS LETTERS, 2019, 87 : 115 - 124
  • [49] A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem
    Yanling Deng
    Fei Wang
    Huayi Wei
    Journal of Scientific Computing, 2020, 83
  • [50] Virtual element method for elliptic Neumann boundary optimal control problem
    Liu, Shuo
    Zhou, Zhaojie
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04):