A virtual element method for the acoustic vibration problem

被引:0
|
作者
Lourenço Beirão da Veiga
David Mora
Gonzalo Rivera
Rodolfo Rodríguez
机构
[1] Università di Milano-Bicocca,Dipartimento di Matematica e Applicazioni
[2] Universidad del Bío-Bío,GIMNAP, Departamento de Matemática
[3] Universidad de Concepción,Centro de Investigación en Ingeniería Matemática (CI2MA)
[4] Universidad de Concepción,CI2MA, Departamento de Ingeniería Matemática
来源
Numerische Mathematik | 2017年 / 136卷
关键词
65N30; 65N25; 70J30; 76M25;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze in this paper a virtual element approximation for the acoustic vibration problem. We consider a variational formulation relying only on the fluid displacement and propose a discretization by means of H(div)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {H}(\mathrm {div})$$\end{document} virtual elements with vanishing rotor. Under standard assumptions on the meshes, we show that the resulting scheme provides a correct approximation of the spectrum and prove optimal order error estimates. With this end, we prove approximation properties of the proposed virtual elements. We also report some numerical tests supporting our theoretical results.
引用
收藏
页码:725 / 763
页数:38
相关论文
共 50 条
  • [31] A MIXED VIRTUAL ELEMENT METHOD FOR THE BOUSSINESQ PROBLEM ON POLYGONAL MESHES
    Gatica, Gabriel N.
    Munar, Mauricio
    Sequeira, Filander A.
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (03): : 392 - 427
  • [32] A priori error analysis of virtual element method for contact problem
    Wang, Fei
    Reddy, B. Daya
    FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING, 2022, 2022 (01):
  • [33] Extended virtual element method for the Laplace problem with singularities and discontinuities
    Benvenuti, E.
    Chiozzi, A.
    Manzini, G.
    Sukumar, N.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 356 : 571 - 597
  • [34] The Stabilized Nonconforming Virtual Element Method for Linear Elasticity Problem
    Jikun Zhao
    Tianle Wang
    Bei Zhang
    Journal of Scientific Computing, 2022, 92
  • [35] Virtual element method for a frictional contact problem with normal compliance
    Wu, Bangmin
    Wang, Fei
    Han, Weimin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 107
  • [36] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Wang, Gang
    Wang, Ying
    He, Yinnian
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (02)
  • [37] Nonconforming virtual element method for the Schrödinger eigenvalue problem
    Adak, Dibyendu
    Manzini, Gianmarco
    Vellojin, Jesus
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 182 : 213 - 235
  • [38] The virtual element method for a contact problem with wear and unilateral constraint
    Wu, Bangmin
    Wang, Fei
    Han, Weimin
    APPLIED NUMERICAL MATHEMATICS, 2024, 206 : 29 - 47
  • [39] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Gang Wang
    Ying Wang
    Yinnian He
    Journal of Scientific Computing, 2020, 84
  • [40] A nonconforming virtual element method for the Stokes problem on general meshes
    Liu, Xin
    Li, Jian
    Chen, Zhangxin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 320 : 694 - 711