Twisted polytope sheaves and coherent–constructible correspondence for toric varieties

被引:0
|
作者
Peng Zhou
机构
[1] Institut des Hautes Études Scientifiques,
来源
Selecta Mathematica | 2019年 / 25卷
关键词
53D37 (Homological Mirror Symmetry);
D O I
暂无
中图分类号
学科分类号
摘要
Given a smooth projective toric variety XΣ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_\Sigma $$\end{document} of complex dimension n, Fang–Liu–Treumann–Zaslow (Invent Math 186(1):79–114, 2011) showed that there is a quasi-embedding of the differential graded (dg) derived category of coherent sheaves Coh(XΣ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Coh(X_\Sigma )$$\end{document} into the dg derived category of constructible sheaves on a torus Sh(Tn,ΛΣ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Sh(T^n, \Lambda _\Sigma )$$\end{document}. Recently, Kuwagaki (The nonequivariant coherent-constructible correspondence for toric stacks, 2016. arXiv:1610.03214) proved that the quasi-embedding is a quasi-equivalence, and generalized the result to toric stacks. Here we give a different proof in the smooth projective case, using non-characteristic deformation of sheaves to find twisted polytope sheaves that co-represent the stalk functors.
引用
收藏
相关论文
共 45 条