THE NONEQUIVARIANT COHERENT-CONSTRUCTIBLE CORRESPONDENCE FOR TORIC SURFACES

被引:6
|
作者
Kuwagaki, Tatsuki [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
关键词
D O I
10.4310/jdg/1506650423
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the nonequivariant coherent-constructible correspondence conjectured by Fang-Liu-Treumann-Zaslow in the case of toric surfaces. Our proof is based on describing a semi-orthogonal decomposition of the constructible side under toric point blow-up and comparing it with Orlov's theorem.
引用
收藏
页码:373 / 393
页数:21
相关论文
共 50 条
  • [1] THE NONEQUIVARIANT COHERENT-CONSTRUCTIBLE CORRESPONDENCE FOR TORIC STACKS
    Kuwagaki, Tatsuki
    DUKE MATHEMATICAL JOURNAL, 2020, 169 (11) : 2125 - 2197
  • [2] The Coherent-Constructible Correspondence for Toric Deligne-Mumford Stacks
    Fang, Bohan
    Liu, Chiu-Chu Melissa
    Treumann, David
    Zaslow, Eric
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (04) : 914 - 954
  • [3] Twisted polytope sheaves and coherent-constructible correspondence for toric varieties
    Zhou, Peng
    SELECTA MATHEMATICA-NEW SERIES, 2019, 25 (01):
  • [4] Categorical Localization for the Coherent-Constructible Correspondence
    Ike, Yuichi
    Kuwagaki, Tatsuki
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2019, 55 (01) : 1 - 24
  • [5] The coherent-constructible correspondence and Fourier-Mukai transforms
    Bohan Fang
    Chiu-Chu Melissa Liu
    David Treumann
    Eric Zaslow
    Acta Mathematica Sinica, English Series, 2011, 27 : 275 - 308
  • [6] The Coherent-Constructible Correspondence and Fourier-Mukai Transforms
    Fang, Bohan
    Liu, Chiu-Chu Melissa
    Treumann, David
    Zaslow, Eric
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (02) : 275 - 308
  • [7] The non-equivariant coherent-constructible correspondence and a conjecture of King
    Sarah Scherotzke
    Nicolò Sibilla
    Selecta Mathematica, 2016, 22 : 389 - 416
  • [8] The non-equivariant coherent-constructible correspondence and a conjecture of King
    Scherotzke, Sarah
    Sibilla, Nicolo
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (01): : 389 - 416
  • [9] Twisted polytope sheaves and coherent–constructible correspondence for toric varieties
    Peng Zhou
    Selecta Mathematica, 2019, 25
  • [10] Equivariant-constructible Koszul duality for dual toric varieties
    Braden, T
    Lunts, VA
    ADVANCES IN MATHEMATICS, 2006, 201 (02) : 408 - 453