Given a smooth projective toric variety XΣ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X_\Sigma $$\end{document} of complex dimension n, Fang–Liu–Treumann–Zaslow (Invent Math 186(1):79–114, 2011) showed that there is a quasi-embedding of the differential graded (dg) derived category of coherent sheaves Coh(XΣ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Coh(X_\Sigma )$$\end{document} into the dg derived category of constructible sheaves on a torus Sh(Tn,ΛΣ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Sh(T^n, \Lambda _\Sigma )$$\end{document}. Recently, Kuwagaki (The nonequivariant coherent-constructible correspondence for toric stacks, 2016. arXiv:1610.03214) proved that the quasi-embedding is a quasi-equivalence, and generalized the result to toric stacks. Here we give a different proof in the smooth projective case, using non-characteristic deformation of sheaves to find twisted polytope sheaves that co-represent the stalk functors.