Discrete One-Dimensional Coverage Process on a Renewal Process

被引:0
|
作者
Sandro Gallo
Nancy L. Garcia
机构
[1] Universidade Federal de São Carlos,Departamento de Estatística
[2] Universidade Estadual de Campinas,undefined
来源
关键词
Coverage process; Rumor process; Renewal theory;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the following coverage model on N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {N}$$\end{document}, for each site i∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \in \mathbb {N}$$\end{document} associate a pair (ξi,Ri)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\xi _i, R_i)$$\end{document} where (ξi)i≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\xi _i)_{i \ge 0}$$\end{document} is a 1-dimensional undelayed discrete renewal point process and (Ri)i≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R_i)_{i \ge 0}$$\end{document} is an i.i.d. sequence of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {N}$$\end{document}-valued random variables. At each site where ξi=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi _i=1$$\end{document} start an interval of length Ri\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_i$$\end{document}. Coverage occurs if every site of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {N}$$\end{document} is covered by some interval. We obtain sharp conditions for both, positive and null probability of coverage. As corollaries, we extend results of the literature of rumor processes and discrete one-dimensional Boolean percolation.
引用
收藏
页码:381 / 397
页数:16
相关论文
共 50 条
  • [41] Coarsening process in one-dimensional surface growth models
    Alessandro Torcini
    Paolo Politi
    The European Physical Journal B - Condensed Matter and Complex Systems, 2002, 25 : 519 - 529
  • [42] Synthesis of one-dimensional chalcogenides by a novel hydrothermal process
    Zhang, H
    Yang, DR
    Ji, YJ
    Ma, XY
    Xu, J
    Que, DL
    FUNCTIONAL NANOMATERIALS FOR OPTOELECTRONICS AND OTHER APPLICATIONS, 2004, 99-100 : 203 - 208
  • [43] A One-Dimensional Model of the Electrical Resistance Sintering Process
    J. M. Montes
    F. G. Cuevas
    J. Cintas
    P. Urban
    Metallurgical and Materials Transactions A, 2015, 46 : 963 - 980
  • [44] EDGE FLUCTUATIONS FOR THE ONE-DIMENSIONAL SUPERCRITICAL CONTACT PROCESS
    GALVES, A
    PRESUTTI, E
    ANNALS OF PROBABILITY, 1987, 15 (03): : 1131 - 1145
  • [45] Loss of Medicaid Coverage During the Renewal Process
    Dague, Laura
    Myerson, Rebecca
    JAMA HEALTH FORUM, 2024, 5 (05): : E240839
  • [46] ERGODICITY OF AN INFINITE DIMENSIONAL RENEWAL PROCESS
    ANDJEL, ED
    VARES, ME
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1992, 42 (02) : 215 - 236
  • [47] Phase diagram structures in a periodic one-dimensional exclusion process
    Jiang, Rui
    Wang, Yu-Qing
    Kolomeisky, Anatoly B.
    Huang, Wei
    Hu, Mao-Bin
    Wu, Qing-Song
    PHYSICAL REVIEW E, 2013, 87 (01):
  • [48] ON ONE-DIMENSIONAL STOCHASTIC DIFFERENTIAL EQUATIONS INVOLVING THE MAXIMUM PROCESS
    Belfadli, R.
    Hamadene, S.
    Ouknine, Y.
    STOCHASTICS AND DYNAMICS, 2009, 9 (02) : 277 - 292
  • [49] Absorbing state transition in a one-dimensional contact replication process
    Ferreira, SC
    PHYSICAL REVIEW E, 2004, 70 (03):
  • [50] Sexual reproduction process on one-dimensional stochastic lattice model
    Sato, Kazunori
    Mathematics for Ecology and Environmental Sciences, 2007, : 81 - 92