Discrete One-Dimensional Coverage Process on a Renewal Process

被引:0
|
作者
Sandro Gallo
Nancy L. Garcia
机构
[1] Universidade Federal de São Carlos,Departamento de Estatística
[2] Universidade Estadual de Campinas,undefined
来源
关键词
Coverage process; Rumor process; Renewal theory;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the following coverage model on N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {N}$$\end{document}, for each site i∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \in \mathbb {N}$$\end{document} associate a pair (ξi,Ri)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\xi _i, R_i)$$\end{document} where (ξi)i≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\xi _i)_{i \ge 0}$$\end{document} is a 1-dimensional undelayed discrete renewal point process and (Ri)i≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R_i)_{i \ge 0}$$\end{document} is an i.i.d. sequence of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {N}$$\end{document}-valued random variables. At each site where ξi=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi _i=1$$\end{document} start an interval of length Ri\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_i$$\end{document}. Coverage occurs if every site of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {N}$$\end{document} is covered by some interval. We obtain sharp conditions for both, positive and null probability of coverage. As corollaries, we extend results of the literature of rumor processes and discrete one-dimensional Boolean percolation.
引用
收藏
页码:381 / 397
页数:16
相关论文
共 50 条
  • [31] One-dimensional dynamic model of a paper forming process
    Turnbull, PF
    Perkins, NC
    Schultz, WW
    Beuther, PD
    TAPPI JOURNAL, 1997, 80 (01): : 245 - 253
  • [32] Contact process on one-dimensional long range percolation
    Can, Van Hao
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20 : 1 - 11
  • [33] UMKLAPP PROCESS AND RESISTIVITY IN ONE-DIMENSIONAL FERMION SYSTEMS
    GIAMARCHI, T
    PHYSICAL REVIEW B, 1991, 44 (07): : 2905 - 2913
  • [34] OPTIMAL-CONTROL OF A ONE-DIMENSIONAL STORAGE PROCESS
    SONER, HM
    APPLIED MATHEMATICS AND OPTIMIZATION, 1985, 13 (02): : 175 - 191
  • [35] Coarsening process in one-dimensional surface growth models
    Torcini, A
    Politi, P
    EUROPEAN PHYSICAL JOURNAL B, 2002, 25 (04): : 519 - 529
  • [37] THE TRACE OF A ONE-DIMENSIONAL MARKOV PROCESS WITH LEVY MEASURE
    SEIDEL, H
    MATHEMATISCHE NACHRICHTEN, 1980, 97 : 233 - 245
  • [38] A One-Dimensional Model of the Electrical Resistance Sintering Process
    Montes, J. M.
    Cuevas, F. G.
    Cintas, J.
    Urban, P.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2015, 46A (02): : 963 - 980
  • [39] Modelling and calculation of flotation process in one-dimensional formulation
    Amanbaev, Tulegen
    Tilleuov, Gamidulla
    Tulegenova, Bibigul
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016), 2016, 1759
  • [40] MODELING A ONE-DIMENSIONAL FRACTURE PROCESS IN THIN COATINGS
    STOYAN, D
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1987, 67 (09): : 435 - 443