Discrete One-Dimensional Coverage Process on a Renewal Process

被引:0
|
作者
Sandro Gallo
Nancy L. Garcia
机构
[1] Universidade Federal de São Carlos,Departamento de Estatística
[2] Universidade Estadual de Campinas,undefined
来源
关键词
Coverage process; Rumor process; Renewal theory;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the following coverage model on N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {N}$$\end{document}, for each site i∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \in \mathbb {N}$$\end{document} associate a pair (ξi,Ri)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\xi _i, R_i)$$\end{document} where (ξi)i≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\xi _i)_{i \ge 0}$$\end{document} is a 1-dimensional undelayed discrete renewal point process and (Ri)i≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R_i)_{i \ge 0}$$\end{document} is an i.i.d. sequence of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {N}$$\end{document}-valued random variables. At each site where ξi=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi _i=1$$\end{document} start an interval of length Ri\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_i$$\end{document}. Coverage occurs if every site of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {N}$$\end{document} is covered by some interval. We obtain sharp conditions for both, positive and null probability of coverage. As corollaries, we extend results of the literature of rumor processes and discrete one-dimensional Boolean percolation.
引用
收藏
页码:381 / 397
页数:16
相关论文
共 50 条
  • [21] A ONE-DIMENSIONAL LINEARIZED MODEL OF A PROCESS IN AN OPTICAL PLASMATRON
    RAIZER, YP
    KVANTOVAYA ELEKTRONIKA, 1984, 11 (01): : 64 - 72
  • [23] LOCAL EQUILIBRIUM FOR A ONE-DIMENSIONAL ZERO RANGE PROCESS
    FERRARI, PA
    PRESUTTI, E
    VARES, ME
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1987, 26 (01) : 31 - 45
  • [24] ONE-DIMENSIONAL MODEL OF REARRANGEMENT PROCESS AND FADDEEV EQUATIONS
    LIPSZYC, K
    JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (01) : 133 - 138
  • [25] One-dimensional dynamic model of a paper forming process
    Turnbull, PF
    Schultz, WW
    Perkins, NC
    Beuther, PD
    1996 ENGINEERING CONFERENCE, BOOKS 1 AND 2, 1996, : 175 - 183
  • [26] Variance function estimation of a one-dimensional nonstationary process
    Kim, Eunice J.
    Zhu, Zhengyuan
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (03) : 327 - 339
  • [27] On the parabolic generator of a general one-dimensional Levy process
    Eisenbaum, Nathalie
    Kyprianou, Andreas E.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 : 198 - 209
  • [28] Characterization of one-dimensional texture - A point process approach
    Zacksenhouse, M
    Abramovich, G
    Hetsroni, G
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 2709 - 2712
  • [29] Critical behavior of a one-dimensional diffusive epidemic process
    Fulco, UL
    Messias, DN
    Lyra, ML
    PHYSICAL REVIEW E, 2001, 63 (06): : 1 - 066118
  • [30] Variance function estimation of a one-dimensional nonstationary process
    Eunice J. Kim
    Zhengyuan Zhu
    Journal of the Korean Statistical Society, 2019, 48 : 327 - 339