Discrete One-Dimensional Coverage Process on a Renewal Process

被引:0
|
作者
Sandro Gallo
Nancy L. Garcia
机构
[1] Universidade Federal de São Carlos,Departamento de Estatística
[2] Universidade Estadual de Campinas,undefined
来源
关键词
Coverage process; Rumor process; Renewal theory;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the following coverage model on N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {N}$$\end{document}, for each site i∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \in \mathbb {N}$$\end{document} associate a pair (ξi,Ri)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\xi _i, R_i)$$\end{document} where (ξi)i≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\xi _i)_{i \ge 0}$$\end{document} is a 1-dimensional undelayed discrete renewal point process and (Ri)i≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R_i)_{i \ge 0}$$\end{document} is an i.i.d. sequence of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {N}$$\end{document}-valued random variables. At each site where ξi=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi _i=1$$\end{document} start an interval of length Ri\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_i$$\end{document}. Coverage occurs if every site of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {N}$$\end{document} is covered by some interval. We obtain sharp conditions for both, positive and null probability of coverage. As corollaries, we extend results of the literature of rumor processes and discrete one-dimensional Boolean percolation.
引用
收藏
页码:381 / 397
页数:16
相关论文
共 50 条
  • [1] Discrete One-Dimensional Coverage Process on a Renewal Process
    Gallo, Sandro
    Garcia, Nancy L.
    JOURNAL OF STATISTICAL PHYSICS, 2018, 173 (02) : 381 - 397
  • [2] TIME EVOLUTION OF ONE-DIMENSIONAL SYSTEMS WHOSE EQUILIBRIUM STATE IS A RENEWAL PROCESS
    SPITZER, FL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A201 - A201
  • [3] Probability distributions for discrete one-dimensional coverage processes
    Handley, JC
    Dougherty, ER
    SIGNAL PROCESSING, 1998, 69 (02) : 163 - 168
  • [4] STATISTICAL-MECHANICS OF DETERMINISTIC CHAOS - THE CASE OF ONE-DIMENSIONAL DISCRETE PROCESS
    KAI, T
    TOMITA, K
    PROGRESS OF THEORETICAL PHYSICS, 1980, 64 (05): : 1532 - 1550
  • [5] Disordered one-dimensional contact process
    Cafiero, R
    Gabrielli, A
    Munoz, MA
    PHYSICAL REVIEW E, 1998, 57 (05): : 5060 - 5068
  • [6] ELEMENTARY PROCESS IN ONE-DIMENSIONAL SCATTERING
    CHEN, AC
    TANI, S
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (04): : 528 - &
  • [7] EXAMPLE OF A ONE-DIMENSIONAL CONTROLLED PROCESS
    GENIS, IL
    KRYLOV, NV
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1976, 21 (01) : 148 - 152
  • [8] Stationary states of the one-dimensional discrete-time facilitated symmetric exclusion process
    Goldstein, S.
    Lebowitz, J. L.
    Speer, E. R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (08)
  • [9] DISCRETE-MODEL OPTIMIZATION FOR AN EXOTHERMIC PROCESS IN A ONE-DIMENSIONAL GAS FLOW.
    Ladikov, Yu.P.
    Levchenko, V.F.
    Mashkovskii, A.G.
    Potapenko, L.S.
    Kibernetika i Vychislitel'naya Tekhnika, 1987, 2 (75): : 82 - 88
  • [10] Thermodynamics of histories for the one-dimensional contact process
    Hooyberghs, Jef
    Vanderzande, Carlo
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,