Learning Interpretable SVMs for Biological Sequence Classification

被引:0
|
作者
Gunnar Rätsch
Sören Sonnenburg
Christin Schäfer
机构
[1] Friedrich Miescher Laboratory,
[2] Max Planck Society,undefined
[3] Fraunhofer Institute FIRST,undefined
来源
关键词
Splice Site; Acceptor Splice Site; Multiple Kernel Learn; String Kernel; Positional Weight Matrix;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Learning interpretable SVMs for biological sequence classification
    Rätsch, G
    Sonnenburg, S
    Schäfer, C
    BMC BIOINFORMATICS, 2006, 7 (Suppl 1)
  • [2] Learning interpretable SVMs for biological sequence classification
    Sonnenburg, S
    Rätsch, G
    Schäfer, C
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, PROCEEDINGS, 2005, 3500 : 389 - 407
  • [3] Biological Sequence Classification Using Deep Learning Architectures
    Sivasubramanian, Arrun
    Prashanth, V. R.
    Kumar, S. Sachin
    Soman, K. P.
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 1, 2023, 473 : 529 - 537
  • [4] Interpretable Sequence Classification via Discrete Optimization
    Shvo, Maayan
    Li, Andrew C.
    Icarte, Rodrigo Toro
    McIlraith, Sheila A.
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 9647 - 9656
  • [5] Efficient Learning of Interpretable Classification Rules
    Ghosh, Bishwamittra
    Malioutov, Dmitry
    Meel, Kuldeep S.
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2022, 74 : 1823 - 1863
  • [6] Efficient Learning of Interpretable Classification Rules
    Ghosh B.
    Malioutov D.
    Meel K.S.
    Journal of Artificial Intelligence Research, 2022, 74 : 1823 - 1863
  • [7] Scalable and Interpretable One-Class SVMs with Deep Learning and Random Fourier Features
    Nguyen, Minh-Nghia
    Vien, Ngo Anh
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT I, 2019, 11051 : 157 - 172
  • [8] Interpretable and Steerable Sequence Learning via Prototypes
    Ming, Yao
    Xu, Panpan
    Qu, Huamin
    Ren, Liu
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 903 - 913
  • [9] Interpretable Quantum Advantage in Neural Sequence Learning
    Anschuetz, Eric R.
    Hu, Hong-Ye
    Huang, Jin-Long
    Gao, Xun
    PRX QUANTUM, 2023, 4 (02):
  • [10] AttributeNets: An incremental learning method for interpretable classification
    Wu, Hu
    Wang, Yongii
    Huai, Xiaoyong
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2007, 4426 : 940 - +