Asymptotic behaviour for a nonlocal diffusion equation on a lattice

被引:0
|
作者
Liviu I. Ignat
Julio D. Rossi
机构
[1] U. Autónoma de Madrid,Departamento de Matemáticas
[2] Institute of Mathematics of the Romanian Academy,Depto. Matemática
[3] FCEyN UBA (1428),undefined
关键词
35B40; 45A05; 45M05; Nonlocal diffusion; asymptotic behaviour;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the asymptotic behaviour as t → ∞ of solutions to a nonlocal diffusion problem on a lattice, namely, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$u^{\prime}_{n}(t) = \sum_{{j\in}{{{\mathbb{Z}}}^{d}}} J_{n-j}u_{j}(t)-u_{n}(t)$$ \end{document} with t ≥ 0 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n \in {\mathbb{Z}}^{d}$$ \end{document}. We assume that J is nonnegative and verifies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum_{{n \in {\mathbb{Z}}}^{d}}J_{n}= 1$$ \end{document}. We find that solutions decay to zero as t → ∞ and prove an optimal decay rate using, as our main tool, the discrete Fourier transform.
引用
收藏
页码:918 / 925
页数:7
相关论文
共 50 条
  • [21] On the asymptotic behaviour of nonlocal perimeters
    Berendsen, Judith
    Pagliari, Valerio
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2019, 25
  • [22] Existence and asymptotic behaviour of solutions of the very fast diffusion equation
    Hsu, Shu-Yu
    MANUSCRIPTA MATHEMATICA, 2013, 140 (3-4) : 441 - 460
  • [23] Asymptotic behaviour of the wave equation with nonlocal weak damping and anti-damping
    Zhao, Chunyan
    Zhao, Chunxiang
    Zhong, Chengkui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 490 (01)
  • [24] Existence and asymptotic behaviour of solutions of the very fast diffusion equation
    Shu-Yu Hsu
    Manuscripta Mathematica, 2013, 140 : 441 - 460
  • [25] Asymptotic behaviour of nonlocal p-Laplacian reaction-diffusion problems
    Caraballo, Tomas
    Herrera-Cobos, Marta
    Marin-Rubio, Pedro
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 459 (02) : 997 - 1015
  • [26] Globally Asymptotic Stability of a Delayed Integro-Differential Equation With Nonlocal Diffusion
    Weng, Peixuan
    Liu, Li
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (02): : 436 - 448
  • [27] ASYMPTOTIC BEHAVIOR FOR A ONE-DIMENSIONAL NONLOCAL DIFFUSION EQUATION IN EXTERIOR DOMAINS
    Cortazar, Carmen
    Elgueta, Manuel
    Quiros, Fernando
    Wolanski, Noemi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (03) : 1549 - 1574
  • [28] On the Asymptotic Behaviour of Some Nonlocal Problems
    M. Chipot
    B. Lovat
    Positivity, 1999, 3 : 65 - 81
  • [29] On the asymptotic behaviour of some nonlocal problems
    Chipot, M
    Lovat, B
    POSITIVITY, 1999, 3 (01) : 65 - 81
  • [30] DISCRETE AND NONLOCAL SOLUTIONS FOR THE LATTICE CATTANEO-VERNOTTE HEAT DIFFUSION EQUATION
    del Prado, Estefania Nunez
    Challamel, Noel
    Picandet, Vincent
    MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS, 2021, 9 (04) : 367 - 396