Asymptotic behaviour for a nonlocal diffusion equation on a lattice

被引:0
|
作者
Liviu I. Ignat
Julio D. Rossi
机构
[1] U. Autónoma de Madrid,Departamento de Matemáticas
[2] Institute of Mathematics of the Romanian Academy,Depto. Matemática
[3] FCEyN UBA (1428),undefined
关键词
35B40; 45A05; 45M05; Nonlocal diffusion; asymptotic behaviour;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the asymptotic behaviour as t → ∞ of solutions to a nonlocal diffusion problem on a lattice, namely, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$u^{\prime}_{n}(t) = \sum_{{j\in}{{{\mathbb{Z}}}^{d}}} J_{n-j}u_{j}(t)-u_{n}(t)$$ \end{document} with t ≥ 0 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n \in {\mathbb{Z}}^{d}$$ \end{document}. We assume that J is nonnegative and verifies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum_{{n \in {\mathbb{Z}}}^{d}}J_{n}= 1$$ \end{document}. We find that solutions decay to zero as t → ∞ and prove an optimal decay rate using, as our main tool, the discrete Fourier transform.
引用
收藏
页码:918 / 925
页数:7
相关论文
共 50 条
  • [31] Asymptotic behaviour of blow-up solutions of the fast diffusion equation
    Hsu, Shu-Yu
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (06):
  • [32] Asymptotic behaviour of blow-up solutions of the fast diffusion equation
    Shu-Yu Hsu
    Nonlinear Differential Equations and Applications NoDEA, 2023, 30
  • [33] Asymptotic behavior for nonlocal diffusion equations
    Chasseigne, Emmanuel
    Chaves, Manuela
    Rossi, Julio D.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (03): : 271 - 291
  • [34] Asymptotic patterns of a reaction-diffusion equation with nonlinear-nonlocal functional response
    Tian, Yanling
    Weng, Peixuan
    IMA JOURNAL OF APPLIED MATHEMATICS, 2013, 78 (01) : 70 - 101
  • [35] Asymptotic patterns of a reaction-diffusion equation with nonlinear-nonlocal functional response
    Tian, Yanling
    Weng, Peixuan
    Tian, Y. (tianyl@scnu.edu.cn), 1600, Oxford University Press (78): : 70 - 101
  • [36] LARGE TIME BEHAVIOUR FOR A NONLOCAL DIFFUSION - CONVECTION EQUATION RELATED WITH GAS DYNAMICS
    Ignat, Liviu I.
    Pazoto, Ademir F.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (09) : 3575 - 3589
  • [37] Nonlocal gravity and the diffusion equation
    Calcagni, Gianluca
    Nardelli, Giuseppe
    PHYSICAL REVIEW D, 2010, 82 (12):
  • [38] The diffusion equation with nonlocal data
    Miller, P. D.
    Smith, D. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (02) : 1119 - 1143
  • [39] Nonlocal electrical diffusion equation
    Gomez-Aguilar, J. F.
    Escobar-Jimemez, R. F.
    Olivares-Peregrino, V. H.
    Benavides-Cruz, M.
    Calderon-Ramon, C.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (01):
  • [40] Asymptotic behaviour of the doubly nonlinear diffusion equation ut = Δpum on bounded domains
    Stan, Diana
    Luis Vazquez, Juan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 77 : 1 - 32