ASYMPTOTIC BEHAVIOR FOR A ONE-DIMENSIONAL NONLOCAL DIFFUSION EQUATION IN EXTERIOR DOMAINS

被引:4
|
作者
Cortazar, Carmen [1 ]
Elgueta, Manuel [1 ]
Quiros, Fernando [2 ]
Wolanski, Noemi [3 ,4 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Matemat, Santiago 7820436, Chile
[2] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[3] UBA, Dept Matemat, FCEyN, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
[4] Consejo Nacl Invest Cient & Tecn, IMAS, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
关键词
nonlocal diffusion; exterior domain; asymptotic behavior; matched asymptotics; PHASE-TRANSITIONS; MODEL;
D O I
10.1137/151006287
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the large time behavior of solutions to the nonlocal diffusion equation partial derivative(t)u = J * u - u in an exterior one-dimensional domain, with zero Dirichlet data on the complement. In the far field scale, xi 1 <= vertical bar x vertical bar t(-1/2) <= xi 2, xi 1, xi 2 > 0, this behavior is given by a multiple of the dipole solution for the local heat equation with a diffusivity determined by J. However, the proportionality constant is not the same on R+ and R-: it is given by the asymptotic first moment of the solution on the corresponding half line, which can be computed in terms of the initial data. In the near field scale, vertical bar x vertical bar <= t(1/2)h(t), lim(t ->infinity) h(t) = 0, the solution scaled by a factor t(3/2) /(vertical bar x vertical bar + 1) converges to a stationary solution of the problem that behaves as b(+/-)x as x -> +/-infinity. The constants b(+/-) are obtained through a matching procedure with the far field limit. In the very far field, vertical bar x vertical bar >= t(1/2)g(t), g(t) -> infinity, the solution decays as o(t(-1)).
引用
收藏
页码:1549 / 1574
页数:26
相关论文
共 50 条
  • [1] Asymptotic behavior for a nonlocal diffusion equation in exterior domains: The critical two-dimensional case
    Cortazar, C.
    Elgueta, M.
    Quiros, F.
    Wolanski, N.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (01) : 586 - 610
  • [2] Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes
    Cortazar, Carmen
    Elgueta, Manuel
    Quiros, Fernando
    Wolanski, Noemi
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (02) : 673 - 697
  • [3] Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes
    Carmen Cortázar
    Manuel Elgueta
    Fernando Quirós
    Noemí Wolanski
    [J]. Archive for Rational Mechanics and Analysis, 2012, 205 : 673 - 697
  • [4] FRACTIONAL DIFFUSION EQUATION ON FRACTALS - ONE-DIMENSIONAL CASE AND ASYMPTOTIC-BEHAVIOR
    GIONA, M
    ROMAN, HE
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (08): : 2093 - 2105
  • [5] A NEW NONLOCAL NONLINEAR DIFFUSION EQUATION: THE ONE-DIMENSIONAL CASE
    Aletti, G.
    Benfenati, A.
    Naldi, G.
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 106 (02) : 333 - 339
  • [6] Asymptotic Behavior of the One-Dimensional Fisher–Kolmogorov–Petrovskii–Piskunov Equation with Anomalouos Diffusion
    A. A. Prozorov
    A. Yu. Trifonov
    A. V. Shapovalov
    [J]. Russian Physics Journal, 2015, 58 : 399 - 409
  • [7] Asymptotic behavior of solution curves of nonlocal one-dimensional elliptic equations
    Shibata, Tetsutaro
    [J]. BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
  • [8] Asymptotic behavior of solution curves of nonlocal one-dimensional elliptic equations
    Tetsutaro Shibata
    [J]. Boundary Value Problems, 2022
  • [9] Asymptotic Behavior of the One-Dimensional Fisher-Kolmogorov-Petrovskii-Piskunov Equation with Anomalouos Diffusion
    Prozorov, A. A.
    Trifonov, A. Yu.
    Shapovalov, A. V.
    [J]. RUSSIAN PHYSICS JOURNAL, 2015, 58 (03) : 399 - 409
  • [10] ASYMPTOTIC BEHAVIOR OF THE NONLOCAL DIFFUSION EQUATION WITH LOCALIZED SOURCE
    Yang, Jinge
    Zhou, Shuangshuang
    Zheng, Sining
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (10) : 3521 - 3532