Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes

被引:10
|
作者
Cortazar, Carmen [1 ]
Elgueta, Manuel [1 ]
Quiros, Fernando [2 ]
Wolanski, Noemi [3 ,4 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Matemat, Santiago, Chile
[2] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[3] UBA, Dept Matemat, FCEyN, Buenos Aires, DF, Argentina
[4] Consejo Nacl Invest Cient & Tecn, IMAS, RA-1033 Buenos Aires, DF, Argentina
关键词
PHASE-TRANSITIONS; EXTERIOR DOMAIN; HEAT-EQUATION; MODEL;
D O I
10.1007/s00205-012-0519-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with the asymptotic behavior of solutions to a non-local diffusion equation, u (t) = J*u-u := Lu, in an exterior domain, Omega, which excludes one or several holes, and with zero Dirichlet data on . When the space dimension is three or more this behavior is given by a multiple of the fundamental solution of the heat equation away from the holes. On the other hand, if the solution is scaled according to its decay factor, close to the holes it behaves like a function that is L-harmonic, Lu = 0, in the exterior domain and vanishes in its complement. The height of such a function at infinity is determined through a matching procedure with the multiple of the fundamental solution of the heat equation representing the outer behavior. The inner and the outer behaviors can be presented in a unified way through a suitable global approximation.
引用
收藏
页码:673 / 697
页数:25
相关论文
共 50 条
  • [1] Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes
    Carmen Cortázar
    Manuel Elgueta
    Fernando Quirós
    Noemí Wolanski
    [J]. Archive for Rational Mechanics and Analysis, 2012, 205 : 673 - 697
  • [2] ASYMPTOTIC BEHAVIOR FOR A ONE-DIMENSIONAL NONLOCAL DIFFUSION EQUATION IN EXTERIOR DOMAINS
    Cortazar, Carmen
    Elgueta, Manuel
    Quiros, Fernando
    Wolanski, Noemi
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (03) : 1549 - 1574
  • [3] ASYMPTOTIC BEHAVIOR OF THE NONLOCAL DIFFUSION EQUATION WITH LOCALIZED SOURCE
    Yang, Jinge
    Zhou, Shuangshuang
    Zheng, Sining
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (10) : 3521 - 3532
  • [4] ASYMPTOTIC BEHAVIOR FOR A NONLOCAL DIFFUSION EQUATION ON THE HALF LINE
    Cortazar, Carmen
    Elgueta, Manuel
    Quiros, Fernando
    Wolanski, Noemi
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (04) : 1391 - 1407
  • [5] Asymptotic behavior for a nonlocal diffusion equation in exterior domains: The critical two-dimensional case
    Cortazar, C.
    Elgueta, M.
    Quiros, F.
    Wolanski, N.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (01) : 586 - 610
  • [6] On the asymptotic behavior of a subcritical convection-diffusion equation with nonlocal diffusion
    Cazacu, Cristian M.
    Ignat, Liviu I.
    Pazoto, Ademir F.
    [J]. NONLINEARITY, 2017, 30 (08) : 3126 - 3150
  • [7] On the asymptotic behavior for a nonlocal diffusion equation with an absorption term on a lattice
    Nabongo, Diabate
    Boni, Thedore
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2008, 26 (1-2): : 19 - 28
  • [8] ASYMPTOTIC BEHAVIOR OF THE SOLUTION OF A DIFFUSION EQUATION WITH NONLOCAL BOUNDARY CONDITIONS
    Kakumani, Bhargav Kumar
    Tumuluri, Suman Kumar
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (02): : 407 - 419
  • [9] Asymptotic stability of the nonlocal diffusion equation with nonlocal delay
    Tang, Yiming
    Wu, Xin
    Yuan, Rong
    Ma, Zhaohai
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024,
  • [10] Asymptotic behavior for nonlocal diffusion equations
    Chasseigne, Emmanuel
    Chaves, Manuela
    Rossi, Julio D.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (03): : 271 - 291