On the asymptotic behavior of a subcritical convection-diffusion equation with nonlocal diffusion

被引:6
|
作者
Cazacu, Cristian M. [1 ,2 ]
Ignat, Liviu I. [2 ]
Pazoto, Ademir F. [3 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, 14 Acad St, Bucharest 010014, Romania
[2] Romanian Acad, Inst Math Simion Stoilow, 21 Calea Grivitei St, Bucharest 010702, Romania
[3] Univ Fed Rio de Janeiro, Inst Matemat, POB 68530, BR-21941909 Rio De Janeiro, RJ, Brazil
关键词
asymptotic behavior; nonlocal diffusion; subcritical convective equation; Oleinik-type estimates; MODEL;
D O I
10.1088/1361-6544/aa773a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a subcritical model that involves nonlocal diffusion and a classical convective term. In spite of the nonlocal diffusion, we obtain an Oleinik type estimate similar to the case when the diffusion is local. First we prove that the entropy solution can be obtained by adding a small viscous term ae uxx and letting mu -> 0. Then, by using uniform Oleinik estimates for the viscous approximation we are able to prove the well-posedness of the entropy solutions with L1-initial data. Using a scaling argument and hyperbolic estimates given by Oleinik's inequality, we obtain the first term in the asymptotic behavior of the nonnegative solutions. Finally, the large time behavior of changing sign solutions is proved using the classical flux-entropy method and estimates for the nonlocal operator.
引用
收藏
页码:3126 / 3150
页数:25
相关论文
共 50 条
  • [1] A nonlocal convection-diffusion equation
    Ignat, Liviu I.
    Rossi, Julio D.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 251 (02) : 399 - 437
  • [2] ASYMPTOTIC-BEHAVIOR OF THE SOLUTIONS OF A CONVECTION-DIFFUSION EQUATION
    ESCOBEDO, M
    ZUAZUA, E
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 309 (06): : 329 - 334
  • [3] Asymptotic stability of shock profiles for nonconvex convection-diffusion equation
    Liu, HL
    [J]. APPLIED MATHEMATICS LETTERS, 1997, 10 (01) : 129 - 134
  • [4] ON A NONLINEAR CONVECTION-DIFFUSION EQUATION
    PASCAL, H
    [J]. PHYSICA A, 1993, 192 (04): : 562 - 568
  • [5] Asymptotic profiles for convection-diffusion equations with variable diffusion
    Duro, G
    Carpio, A
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (04) : 407 - 433
  • [6] Lagrangian for the convection-diffusion equation
    Cresson, Jacky
    Greff, Isabelle
    Inizan, Pierre
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (15) : 1885 - 1895
  • [7] DISCRETIZATION OF A CONVECTION-DIFFUSION EQUATION
    MORTON, KW
    SOBEY, IJ
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1993, 13 (01) : 141 - 160
  • [8] Asymptotic behaviour in convection-diffusion processes
    Reyes, G
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 37 (03) : 301 - 318
  • [9] Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes
    Cortazar, Carmen
    Elgueta, Manuel
    Quiros, Fernando
    Wolanski, Noemi
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (02) : 673 - 697
  • [10] Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes
    Carmen Cortázar
    Manuel Elgueta
    Fernando Quirós
    Noemí Wolanski
    [J]. Archive for Rational Mechanics and Analysis, 2012, 205 : 673 - 697