On the asymptotic behavior of a subcritical convection-diffusion equation with nonlocal diffusion

被引:6
|
作者
Cazacu, Cristian M. [1 ,2 ]
Ignat, Liviu I. [2 ]
Pazoto, Ademir F. [3 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, 14 Acad St, Bucharest 010014, Romania
[2] Romanian Acad, Inst Math Simion Stoilow, 21 Calea Grivitei St, Bucharest 010702, Romania
[3] Univ Fed Rio de Janeiro, Inst Matemat, POB 68530, BR-21941909 Rio De Janeiro, RJ, Brazil
关键词
asymptotic behavior; nonlocal diffusion; subcritical convective equation; Oleinik-type estimates; MODEL;
D O I
10.1088/1361-6544/aa773a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a subcritical model that involves nonlocal diffusion and a classical convective term. In spite of the nonlocal diffusion, we obtain an Oleinik type estimate similar to the case when the diffusion is local. First we prove that the entropy solution can be obtained by adding a small viscous term ae uxx and letting mu -> 0. Then, by using uniform Oleinik estimates for the viscous approximation we are able to prove the well-posedness of the entropy solutions with L1-initial data. Using a scaling argument and hyperbolic estimates given by Oleinik's inequality, we obtain the first term in the asymptotic behavior of the nonnegative solutions. Finally, the large time behavior of changing sign solutions is proved using the classical flux-entropy method and estimates for the nonlocal operator.
引用
收藏
页码:3126 / 3150
页数:25
相关论文
共 50 条
  • [41] An exponent difference scheme for the convection-diffusion equation
    Zheng, Wen-jun
    Zong, Er-jie
    Chen, Yan
    [J]. Advances in Matrix Theory and Applications, 2006, : 467 - 469
  • [42] A block circulant preconditioner for the convection-diffusion equation
    Karaa, S
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (09): : 851 - 856
  • [43] FINITE PROXIMATE METHOD FOR CONVECTION-DIFFUSION EQUATION
    Zhao Ming-deng
    Li Tai-ru
    Huai Wen-xin
    Li Liang-liang
    [J]. JOURNAL OF HYDRODYNAMICS, 2008, 20 (01) : 47 - 53
  • [44] Finite Proximate Method for Convection-Diffusion Equation
    Ming-deng Zhao
    Tai-ru Li
    Wen-xin Huai
    Liang-liang Li
    [J]. Journal of Hydrodynamics, 2008, 20 : 47 - 53
  • [45] On the finite difference approximation to the convection-diffusion equation
    Salkuyeh, Davod Khojasteh
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 179 (01) : 79 - 86
  • [46] ADI AS A PRECONDITIONING FOR SOLVING THE CONVECTION-DIFFUSION EQUATION
    CHIN, RCY
    MANTEUFFEL, TA
    DEPILLIS, J
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (02): : 281 - 299
  • [47] EXACT AND APPROXIMATE SOLUTIONS OF THE CONVECTION-DIFFUSION EQUATION
    PASMANTER, RA
    [J]. QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1985, 38 (FEB): : 1 - 26
  • [48] The Backward Problem of Stochastic Convection-Diffusion Equation
    Feng, Xiaoli
    Zhao, Lizhi
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (06) : 3535 - 3560
  • [49] Solution of convection-diffusion equation by the method of characteristics
    Banas, L
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 168 (1-2) : 31 - 39
  • [50] Asymptotic behavior for nonlocal diffusion equations
    Chasseigne, Emmanuel
    Chaves, Manuela
    Rossi, Julio D.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (03): : 271 - 291