A nonlocal convection-diffusion equation

被引:107
|
作者
Ignat, Liviu I. [1 ]
Rossi, Julio D.
机构
[1] Univ Buenos Aires, FCEyN, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[3] Acad Romana, Inst Math, RO-014700 Bucharest, Romania
关键词
nonlocal diffusion; convection-diffusion; asymptotic behaviour;
D O I
10.1016/j.jfa.2007.07.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a nonlocal equation that takes into account convective and diffusive effects, u(t) = J * u - u + G * (f(u)) - f(u) in R-d, with J radially symmetric and G not necessarily symmetric. First, we prove existence, uniqueness and continuous dependence with respect to the initial condition of solutions. This problem is the nonlocal analogous to the usual local convection-diffusion equation u(t) = Delta u + b . del(f (u)). In fact, we prove that solutions of the nonlocal equation converge to the solution of the usual convection-diffusion equation when we rescale the convolution kernels J and G appropriately. Finally we study the asymptotic behaviour of solutions as t -> infinity when f (u) = |u|(q-1) u with q > 1. We find the decay rate and the first-order term in the asymptotic regime. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:399 / 437
页数:39
相关论文
共 50 条
  • [1] On the asymptotic behavior of a subcritical convection-diffusion equation with nonlocal diffusion
    Cazacu, Cristian M.
    Ignat, Liviu I.
    Pazoto, Ademir F.
    [J]. NONLINEARITY, 2017, 30 (08) : 3126 - 3150
  • [2] ON A NONLINEAR CONVECTION-DIFFUSION EQUATION
    PASCAL, H
    [J]. PHYSICA A, 1993, 192 (04): : 562 - 568
  • [3] Lagrangian for the convection-diffusion equation
    Cresson, Jacky
    Greff, Isabelle
    Inizan, Pierre
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (15) : 1885 - 1895
  • [4] DISCRETIZATION OF A CONVECTION-DIFFUSION EQUATION
    MORTON, KW
    SOBEY, IJ
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1993, 13 (01) : 141 - 160
  • [5] Nonlocal boundary value problems for a fractional-order convection-diffusion equation
    Beshtokov, M. Kh.
    Vodakhova, V. A.
    [J]. VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2019, 29 (04): : 459 - 482
  • [6] RAREFACTION WAVES IN NONLOCAL CONVECTION-DIFFUSION EQUATIONS
    Pudelko, Anna
    [J]. COLLOQUIUM MATHEMATICUM, 2014, 137 (01) : 27 - 42
  • [7] Travelling waves in a convection-diffusion equation
    Feireisl, Eduard
    Petzeltova, Hana
    Takac, Peter
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) : 2296 - 2310
  • [8] PARABOLIC APPROXIMATIONS OF THE CONVECTION-DIFFUSION EQUATION
    LOHEAC, JP
    NATAF, F
    SCHATZMAN, M
    [J]. MATHEMATICS OF COMPUTATION, 1993, 60 (202) : 515 - 530
  • [9] A contact problem for a convection-diffusion equation
    Pomeranz, S
    Lewis, G
    Constanda, C
    [J]. INTEGRAL METHODS IN SCIENCE AND ENGINEERING: THEORETICAL AND PRACTICAL ASPECTS, 2006, : 235 - +
  • [10] Interior blowup in a convection-diffusion equation
    Grant, CP
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (06) : 1447 - 1458