Asymptotic behaviour for a nonlocal diffusion equation on a lattice

被引:0
|
作者
Liviu I. Ignat
Julio D. Rossi
机构
[1] U. Autónoma de Madrid,Departamento de Matemáticas
[2] Institute of Mathematics of the Romanian Academy,Depto. Matemática
[3] FCEyN UBA (1428),undefined
关键词
35B40; 45A05; 45M05; Nonlocal diffusion; asymptotic behaviour;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the asymptotic behaviour as t → ∞ of solutions to a nonlocal diffusion problem on a lattice, namely, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$u^{\prime}_{n}(t) = \sum_{{j\in}{{{\mathbb{Z}}}^{d}}} J_{n-j}u_{j}(t)-u_{n}(t)$$ \end{document} with t ≥ 0 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n \in {\mathbb{Z}}^{d}$$ \end{document}. We assume that J is nonnegative and verifies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum_{{n \in {\mathbb{Z}}}^{d}}J_{n}= 1$$ \end{document}. We find that solutions decay to zero as t → ∞ and prove an optimal decay rate using, as our main tool, the discrete Fourier transform.
引用
收藏
页码:918 / 925
页数:7
相关论文
共 50 条
  • [1] Asymptotic behaviour for a nonlocal diffusion equation on a lattice
    Ignat, Liviu I.
    Rossi, Julio D.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2008, 59 (05): : 918 - 925
  • [2] ASYMPTOTIC BEHAVIOUR FOR A DIFFUSION EQUATION GOVERNED BY NONLOCAL INTERACTIONS
    Ovono, Armel Andami
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [3] On the asymptotic behavior for a nonlocal diffusion equation with an absorption term on a lattice
    Nabongo, Diabate
    Boni, Thedore
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2008, 26 (1-2): : 19 - 28
  • [4] Asymptotic behaviour for a semilinear nonlocal equation
    Pazoto, Ademir F.
    Rossi, Julio D.
    ASYMPTOTIC ANALYSIS, 2007, 52 (1-2) : 143 - 155
  • [5] Asymptotic stability of the nonlocal diffusion equation with nonlocal delay
    Tang, Yiming
    Wu, Xin
    Yuan, Rong
    Ma, Zhaohai
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (01) : 1281 - 1302
  • [6] Asymptotic Speeds of Spread for a Nonlocal Diffusion Equation
    Xu, Zhaoquan
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (02) : 473 - 499
  • [7] Asymptotic Speeds of Spread for a Nonlocal Diffusion Equation
    Zhaoquan Xu
    Journal of Dynamics and Differential Equations, 2018, 30 : 473 - 499
  • [8] Asymptotic behaviour of nonlocal reaction-diffusion equations
    Anguiano, M.
    Kloeden, P. E.
    Lorenz, T.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (09) : 3044 - 3057
  • [9] Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes
    Carmen Cortázar
    Manuel Elgueta
    Fernando Quirós
    Noemí Wolanski
    Archive for Rational Mechanics and Analysis, 2012, 205 : 673 - 697
  • [10] Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes
    Cortazar, Carmen
    Elgueta, Manuel
    Quiros, Fernando
    Wolanski, Noemi
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (02) : 673 - 697