The moment problem for continuous positive semidefinite linear functionals

被引:0
|
作者
Mehdi Ghasemi
Salma Kuhlmann
Ebrahim Samei
机构
[1] University of Saskatchewan,Department of Mathematics and Statistics
[2] Universitãt Konstanz,Fachbereich Mathematik und Statistik
来源
Archiv der Mathematik | 2013年 / 100卷
关键词
Primary 14P99; 44A60; Secondary 12D15; 43A35; 46B99; Positive polynomials; Sums of squares; Real algebraic geometry; Moment problem; Weighted norm topologies;
D O I
暂无
中图分类号
学科分类号
摘要
Let τ be a locally convex topology on the countable dimensional polynomial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document} -algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} [\underline{X}] := \mathbb{R} [X_1, \ldots, X_{n}]}$$\end{document} . Let K be a closed subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} ^{n}}$$\end{document} , and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M := M_{\{g_1, \ldots, g_s\}}}$$\end{document} be a finitely generated quadratic module in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} [\underline{X}]}$$\end{document} . We investigate the following question: When is the cone Psd(K) (of polynomials nonnegative on K) included in the closure of M? We give an interpretation of this inclusion with respect to representing continuous linear functionals by measures. We discuss several examples; we compute the closure of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M = \sum \mathbb{R} [\underline{X}]^{2}}$$\end{document} with respect to weighted norm-p topologies. We show that this closure coincides with the cone Psd(K) where K is a certain convex compact polyhedron.
引用
收藏
页码:43 / 53
页数:10
相关论文
共 50 条
  • [41] The Cauchy problem for linear growth functionals
    F. Andreu
    V. Caselles
    J. M. Mazón
    [J]. Journal of Evolution Equations, 2003, 3 : 39 - 65
  • [42] ON THE PROBLEM OF MINIMAX ESTIMATION OF LINEAR FUNCTIONALS
    DODUNEKOVA, R
    [J]. PROBLEMS OF CONTROL AND INFORMATION THEORY-PROBLEMY UPRAVLENIYA I TEORII INFORMATSII, 1989, 18 (04): : 261 - 276
  • [43] Linear continuous operators for the Stieltjes moment problem in Gelfand-Shilov spaces
    Lastra, Alberto
    Sanz, Javier
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (02) : 968 - 981
  • [44] ON SOME RELATIONS BETWEEN THE CONE OF POSITIVE SEMIDEFINITE MATRICES AND THE MOMENT CONE
    Wang, Jie
    Si, Lin
    [J]. ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2019, 21 (01): : 111 - 118
  • [45] SINGULARITY DEGREE OF THE POSITIVE SEMIDEFINITE MATRIX COMPLETION PROBLEM
    Tanigawa, Shin-ichi
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (02) : 986 - 1009
  • [46] CONVERGENCE OF CONTINUOUS LINEAR FUNCTIONALS AND THEIR LEVEL SETS
    BEER, G
    [J]. ARCHIV DER MATHEMATIK, 1989, 52 (05) : 482 - 491
  • [47] CONTINUOUS LINEAR FUNCTIONALS ON WEAK LP SPACES
    CWIKEL, M
    SAGHER, Y
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (06): : 961 - &
  • [48] A New Proof of Inequality for Continuous Linear Functionals
    Feng Cui
    Shijun Yang
    [J]. Journal of Inequalities and Applications, 2011
  • [49] Positive Semidefinite Solution to Matrix Completion Problem and Matrix Approximation Problem
    Liu, Xifu
    [J]. FILOMAT, 2022, 36 (11) : 3709 - 3714
  • [50] An Adaptive Algorithm Employing Continuous Linear Functionals
    Ding, Yuhan
    Hickernell, Fred J.
    Rugama, Lluis Antoni Jimenez
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2018, 2020, 324 : 161 - 181