The moment problem for continuous positive semidefinite linear functionals

被引:0
|
作者
Mehdi Ghasemi
Salma Kuhlmann
Ebrahim Samei
机构
[1] University of Saskatchewan,Department of Mathematics and Statistics
[2] Universitãt Konstanz,Fachbereich Mathematik und Statistik
来源
Archiv der Mathematik | 2013年 / 100卷
关键词
Primary 14P99; 44A60; Secondary 12D15; 43A35; 46B99; Positive polynomials; Sums of squares; Real algebraic geometry; Moment problem; Weighted norm topologies;
D O I
暂无
中图分类号
学科分类号
摘要
Let τ be a locally convex topology on the countable dimensional polynomial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document} -algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} [\underline{X}] := \mathbb{R} [X_1, \ldots, X_{n}]}$$\end{document} . Let K be a closed subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} ^{n}}$$\end{document} , and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M := M_{\{g_1, \ldots, g_s\}}}$$\end{document} be a finitely generated quadratic module in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} [\underline{X}]}$$\end{document} . We investigate the following question: When is the cone Psd(K) (of polynomials nonnegative on K) included in the closure of M? We give an interpretation of this inclusion with respect to representing continuous linear functionals by measures. We discuss several examples; we compute the closure of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M = \sum \mathbb{R} [\underline{X}]^{2}}$$\end{document} with respect to weighted norm-p topologies. We show that this closure coincides with the cone Psd(K) where K is a certain convex compact polyhedron.
引用
收藏
页码:43 / 53
页数:10
相关论文
共 50 条
  • [31] SEVERAL INEQUALITIES WITH POSITIVE LINEAR FUNCTIONALS
    Pavic, Zlatko
    [J]. JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2014, 5 (02): : 1 - 9
  • [32] The Positive Semidefinite Grothendieck Problem with Rank Constraint
    Briet, Jop
    de Oliveira Filho, Fernando Mario
    Vallentin, Frank
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PT I, 2010, 6198 : 31 - +
  • [33] ABSOLUTE CONTINUITY OF POSITIVE LINEAR FUNCTIONALS
    Szucs, Zsolt
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (02): : 201 - 247
  • [35] An example of a positive semidefinite double sequence which is not a moment sequence
    Bisgaard, TM
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2004, 54 (02) : 273 - 277
  • [36] SOLUTION OF SYMMETRIC POSITIVE SEMIDEFINITE PROCRUSTES PROBLEM
    Peng, Jingjing
    Wang, Qingwen
    Peng, Zhenyun
    Chen, Zhencheng
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 543 - 554
  • [37] The Cauchy problem for linear growth functionals
    Andreu, F
    Caselles, V
    Mazón, JM
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2003, 3 (01) : 39 - 65
  • [38] AN EVOLUTION PROBLEM FOR LINEAR GROWTH FUNCTIONALS
    HARDT, R
    ZHOU, XD
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (11-12) : 1879 - 1907
  • [39] Moment bounds for non-linear functionals of the periodogram
    Fay, Gilles
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (06) : 983 - 1009
  • [40] THE INVESTIGATION OF BOGOLIUBOV FUNCTIONALS BY OPERATOR METHODS OF MOMENT PROBLEM
    Berezansky, Yu. M.
    Tesko, V. A.
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2016, 22 (01): : 1 - 47