ON SOME RELATIONS BETWEEN THE CONE OF POSITIVE SEMIDEFINITE MATRICES AND THE MOMENT CONE

被引:0
|
作者
Wang, Jie [1 ]
Si, Lin [1 ]
机构
[1] Beijing Forestry Univ, Coll Sci, Beijing, Peoples R China
来源
关键词
positive semidefinite matrices; moment cone;
D O I
10.17654/DM021010111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the identification (a(11), a(21), a(22), ..., a(d1), a(d2), ..., a(dd))(T) is an element of Ed(d+1)/2 with symmetric matrix A = (a(ij)) is an element of E-d2, the relation between geometry of the cone of positive semidefinite matrices and the moment cone in four-dimensional Euclidean space E-4 is given. As for the higher dimensional case, we present part of the relation of the two types of cone.
引用
收藏
页码:111 / 118
页数:8
相关论文
共 50 条
  • [1] ON THE CONE OF POSITIVE SEMIDEFINITE MATRICES
    HILL, RD
    WATERS, SR
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 90 : 81 - 88
  • [2] On cone of nonsymmetric positive semidefinite matrices
    Wang, Yingnan
    Xiu, Naihua
    Han, Jiye
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (04) : 718 - 736
  • [3] Faces of the cone of positive semidefinite matrices
    Wang, Jie
    Si, Lin
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2019, 62 (03): : 313 - 321
  • [4] CONJUGATE CONE CHARACTERIZATION OF POSITIVE DEFINITE AND SEMIDEFINITE MATRICES
    HAN, SP
    MANGASARIAN, OL
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 56 (JAN) : 89 - 103
  • [5] Variational inequalities over the cone of semidefinite positive symmetric matrices and over the Lorentz cone
    Auslender, A
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2003, 18 (04): : 359 - 376
  • [6] ERGODICITY OF AFFINE PROCESSES ON THE CONE OF SYMMETRIC POSITIVE SEMIDEFINITE MATRICES
    Friesen, Martin
    Jin, Peng
    Kremer, Jonas
    Ruediger, Barbara
    [J]. ADVANCES IN APPLIED PROBABILITY, 2020, 52 (03) : 825 - 854
  • [7] MONOTONE TRANSFORMATIONS ON THE CONE OF ALL POSITIVE SEMIDEFINITE REAL MATRICES
    Golubic, Iva
    Marovt, Janko
    [J]. MATHEMATICA SLOVACA, 2020, 70 (03) : 733 - 744
  • [8] A nonpolyhedral cone of class function inequalities for positive semidefinite matrices
    Barrett, W
    Hall, HT
    Loewy, R
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 303 : 535 - 553
  • [9] LOW-RANK OPTIMIZATION ON THE CONE OF POSITIVE SEMIDEFINITE MATRICES
    Journee, M.
    Bach, F.
    Absil, P. -A.
    Sepulchre, R.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) : 2327 - 2351
  • [10] Positive semidefinite germs on the cone
    Fernando, JF
    Ruiz, JM
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2002, 205 (01) : 109 - 118